找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcation Theory for Hexagonal Agglomeration in Economic Geography; Kiyohiro Ikeda,Kazuo Murota Book 2014 Springer Japan 2014 Core-perip

[復(fù)制鏈接]
樓主: 厭倦了我
11#
發(fā)表于 2025-3-23 11:47:56 | 只看該作者
12#
發(fā)表于 2025-3-23 14:23:17 | 只看該作者
David Raffaelli,Stephen Hawkinsith micromechanism by Krugman’s core–periphery model. The group-theoretic bifurcation analysis procedure presented in Chap. . is applied to a problem with the dihedral group, expressing the symmetry of the racetrack economy. The theoretically possible agglomeration (bifurcation) patterns of this eco
13#
發(fā)表于 2025-3-23 19:38:10 | 只看該作者
14#
發(fā)表于 2025-3-23 23:32:25 | 只看該作者
We Can and Must Understand Computers NOWysis of geometrical characteristics of the lattice, as a vital prerequisite for the group-theoretic bifurcation analysis of this lattice that will be conducted in Chaps. 6–9. Hexagonal distributions on this lattice, corresponding to those envisaged by Christaller and L?sch in central place theory (S
15#
發(fā)表于 2025-3-24 04:48:55 | 只看該作者
16#
發(fā)表于 2025-3-24 09:01:34 | 只看該作者
17#
發(fā)表于 2025-3-24 12:53:39 | 只看該作者
Najla AL-Qawasmeh,Muna Khayyat,Ching Y. Suenbranching lemma as a pertinent and sufficient means to test the existence of hexagonal bifurcating patterns on the hexagonal lattice. By the application of this lemma to the irreducible representations of the group ., all hexagonal distributions of Christaller and L?sch (Chaps. . and .) are shown to
18#
發(fā)表于 2025-3-24 18:45:30 | 只看該作者
19#
發(fā)表于 2025-3-24 19:03:17 | 只看該作者
tical and numerical recipe serviceable for wide audience.This book contributes to an understanding of how bifurcation theory adapts to the analysis of economic geography. It is easily accessible not only to mathematicians and economists, but also to upper-level undergraduate and graduate students wh
20#
發(fā)表于 2025-3-25 00:08:33 | 只看該作者
David Raffaelli,Stephen Hawkinsretic bifurcation analysis procedure under group symmetry is presented with particular emphasis on Liapunov–Schmidt reduction under symmetry. Bifurcation equation, equivariant branching lemma, and block-diagonalization are introduced as mathematical tools used to tackle bifurcation of a symmetric system in Chaps. .–..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 16:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
高雄市| 蛟河市| 涡阳县| 闵行区| 石渠县| 旺苍县| 阳信县| 禄劝| 来安县| 曲阜市| 伽师县| 台南县| 永城市| 乾安县| 康乐县| 顺平县| 承德县| 托克托县| 平定县| 馆陶县| 黔东| 龙川县| 光泽县| 定日县| 延寿县| 惠来县| 连江县| 泉州市| 邻水| 左权县| 衡南县| 福州市| 丹棱县| 修武县| 大新县| 桑日县| 西华县| 金堂县| 黔南| 乌拉特后旗| 南召县|