找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcation Theory for Hexagonal Agglomeration in Economic Geography; Kiyohiro Ikeda,Kazuo Murota Book 2014 Springer Japan 2014 Core-perip

[復(fù)制鏈接]
樓主: 厭倦了我
41#
發(fā)表于 2025-3-28 16:30:06 | 只看該作者
Hexagonal Distributions on Hexagonal Latticeysis of geometrical characteristics of the lattice, as a vital prerequisite for the group-theoretic bifurcation analysis of this lattice that will be conducted in Chaps. 6–9. Hexagonal distributions on this lattice, corresponding to those envisaged by Christaller and L?sch in central place theory (S
42#
發(fā)表于 2025-3-28 20:04:50 | 只看該作者
Irreducible Representations of the Group for Hexagonal Latticewas described in . by the group ., which is the semidirect product of D. by .. In this chapter, the irreducible representations of this group are found according to a standard procedure in group representation theory known as the method of little groups, which exploits the semidirect product structu
43#
發(fā)表于 2025-3-29 01:13:27 | 只看該作者
Matrix Representation for Economy on Hexagonal Lattice . and .. In this chapter, the matrix representation of this group for the economy on the hexagonal lattice is investigated in preparation for the group-theoretic bifurcation analysis in search of bifurcating hexagonal patterns in Chaps. . and .. Irreducible decomposition of the matrix representatio
44#
發(fā)表于 2025-3-29 05:42:34 | 只看該作者
Hexagons of Christaller and L?sch: Using Equivariant Branching Lemmabranching lemma as a pertinent and sufficient means to test the existence of hexagonal bifurcating patterns on the hexagonal lattice. By the application of this lemma to the irreducible representations of the group ., all hexagonal distributions of Christaller and L?sch (Chaps. . and .) are shown to
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 19:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
特克斯县| 定兴县| 保康县| 枣强县| 泰顺县| 馆陶县| 阳信县| 琼结县| 日照市| 南岸区| 和顺县| 旅游| 阿克陶县| 元朗区| 临城县| 怀安县| 津南区| 会理县| 建宁县| 桐柏县| 萝北县| 宽城| 贺兰县| 乌苏市| 华容县| 镇江市| 玛曲县| 祥云县| 舟山市| 海宁市| 荆门市| 苍梧县| 兴海县| 天祝| 沾化县| 廉江市| 保康县| 神农架林区| 苍溪县| 乌恰县| 张掖市|