找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Bifurcation Theory for Hexagonal Agglomeration in Economic Geography; Kiyohiro Ikeda,Kazuo Murota Book 2014 Springer Japan 2014 Core-perip

[復(fù)制鏈接]
樓主: 厭倦了我
21#
發(fā)表于 2025-3-25 06:35:21 | 只看該作者
David Raffaelli,Stephen Hawkinsis highlighted as the most characteristic progress of agglomeration. This chapter, as a whole, serves as an introduction to the methodology for a more general analysis in Chaps. .–. in Part II of an economy on a hexagonal lattice with a larger and more complicated symmetry group.
22#
發(fā)表于 2025-3-25 10:01:19 | 只看該作者
23#
發(fā)表于 2025-3-25 12:47:08 | 只看該作者
24#
發(fā)表于 2025-3-25 17:02:47 | 只看該作者
Riffing on Ted Nelson—Hypermindnomy on the hexagonal lattice. Formulas for the transformation matrix for block-diagonalization of the Jacobian matrix of the equilibrium equation of the economy on the hexagonal lattice are derived and put to use in numerical bifurcation analysis of hexagonal patterns.
25#
發(fā)表于 2025-3-25 21:12:49 | 只看該作者
Najla AL-Qawasmeh,Muna Khayyat,Ching Y. Suenis presented. As a main technical contribution of this book, a complete analysis of bifurcating solutions for hexagonal distributions from critical points of multiplicity 12 is conducted. In particular, hexagons of different types are shown to emerge simultaneously at bifurcation points of multiplicity 12 of certain types.
26#
發(fā)表于 2025-3-26 03:02:54 | 只看該作者
27#
發(fā)表于 2025-3-26 06:51:50 | 只看該作者
28#
發(fā)表于 2025-3-26 08:56:46 | 只看該作者
Introduction to Economic Agglomeration on Hexagonal Latticeones envisaged by central place theory and also envisaged to emerge by Krugman, 1996 for a core–periphery model in two dimensions. The missing link between central place theory and new economic geography has thus been discovered.
29#
發(fā)表于 2025-3-26 14:25:41 | 只看該作者
30#
發(fā)表于 2025-3-26 19:16:32 | 只看該作者
Matrix Representation for Economy on Hexagonal Latticenomy on the hexagonal lattice. Formulas for the transformation matrix for block-diagonalization of the Jacobian matrix of the equilibrium equation of the economy on the hexagonal lattice are derived and put to use in numerical bifurcation analysis of hexagonal patterns.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 16:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
长治市| 石泉县| 河北区| 仁寿县| 栾川县| 青浦区| 三明市| 湛江市| 前郭尔| 汾阳市| 马公市| 拜城县| 包头市| 台东县| 新乐市| 搜索| 四平市| 桦川县| 牡丹江市| 德惠市| 平遥县| 逊克县| 集贤县| 临洮县| 洪洞县| 汝城县| 凌海市| 黄大仙区| 凤冈县| 绥中县| 京山县| 秀山| 辰溪县| 灵台县| 交口县| 蛟河市| 洛宁县| 无为县| 江山市| 浏阳市| 叙永县|