找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Theory of Ordinary Differential Equations; Po-Fang Hsieh,Yasutaka Sibuya Textbook 1999 Springer Science+Business Media New York 1999

[復制鏈接]
樓主: 滲漏
21#
發(fā)表于 2025-3-25 03:29:54 | 只看該作者
22#
發(fā)表于 2025-3-25 10:19:57 | 只看該作者
23#
發(fā)表于 2025-3-25 15:36:51 | 只看該作者
Textbook 1999y. The selection of topics should provide the reader with methods and results that are applicable in a variety of different fields. The text is suitable for a one-year graduate course, as well as a reference book for research mathematicians. The book is divided into four parts. The first covers fund
24#
發(fā)表于 2025-3-25 16:40:32 | 只看該作者
25#
發(fā)表于 2025-3-25 20:23:46 | 只看該作者
26#
發(fā)表于 2025-3-26 00:13:19 | 只看該作者
Textbook 1999rential equations, the third deals with nonlinear equations. In the last part the authors write about the basic results concerning power series solutions. Each chapter begins with a brief discussion of its contents and history. The book has 114 illustrations and 206 exercises. Hints and comments for many problems are given.
27#
發(fā)表于 2025-3-26 05:50:52 | 只看該作者
28#
發(fā)表于 2025-3-26 11:52:56 | 只看該作者
29#
發(fā)表于 2025-3-26 12:58:07 | 只看該作者
30#
發(fā)表于 2025-3-26 17:56:37 | 只看該作者
Asymptotic Expansions,or the study of ordinary differential equations. A motivation of the Gevrey asymptotics is also given by the Maillet Theorem (cf. Theorem V-1-5). In §XI-1, we summarize the basic properties of asymptotic expansions of functions in the sense of Poincaré. The Gevrey asymptotics is explained in §§XI-2-XI-5.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 04:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
嘉善县| 府谷县| 洮南市| 蛟河市| 六安市| 潼南县| 沅江市| 小金县| 怀远县| 仙游县| 宝清县| 杂多县| 芒康县| 昆明市| 海阳市| 利津县| 江永县| 霍邱县| 开远市| 嘉善县| 蕉岭县| 榆树市| 全椒县| 天气| 无棣县| 石林| 新乡县| 剑川县| 西畴县| 搜索| 许昌市| 廉江市| 东光县| 卢氏县| 浦县| 赤水市| 临漳县| 阜新市| 高唐县| 潜江市| 滦南县|