找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

123456
返回列表
打印 上一主題 下一主題

Titlebook: Basic Theory of Ordinary Differential Equations; Po-Fang Hsieh,Yasutaka Sibuya Textbook 1999 Springer Science+Business Media New York 1999

[復(fù)制鏈接]
樓主: 滲漏
51#
發(fā)表于 2025-3-30 12:12:43 | 只看該作者
52#
發(fā)表于 2025-3-30 15:04:09 | 只看該作者
Anika Marusczyk,Holger Wüst,Tim Kolb. As the function.is not analytic at . 0, Theorem I-4-1 does not apply to system (E). Furthermore, the existence of formal power series solutions of (E) is not always guaranteed. Nevertheless, it is known that if a formal power series solution of (E) exists, then the series is always convergent. Thi
53#
發(fā)表于 2025-3-30 19:27:08 | 只看該作者
54#
發(fā)表于 2025-3-30 22:57:11 | 只看該作者
Anderson Transitions and Interactionstable manifolds more closely for analytic differential equations. First we change a given system by an analytic transformation to a simple standard form. By virtue of such a simplification, we can construct the stable manifold in a simple analytic form. This idea is applied to analytic systems in ?.
55#
發(fā)表于 2025-3-31 04:39:05 | 只看該作者
56#
發(fā)表于 2025-3-31 07:50:52 | 只看該作者
https://doi.org/10.1007/978-3-031-17937-2n [Huk4] and [Tul]. In §XIII-7, the Newton polygon of a linear differential operator is defined. This polygon is useful when we calculate formal solutions of an n-th-order linear differential equation (cf. [St]). In §XIII-8, we explain asymptotic solutions in the Gevrey asymptotics. To understand ma
57#
發(fā)表于 2025-3-31 11:21:16 | 只看該作者
This chapter introduces you to the stages of a conveyancing transaction from the point of view of the seller’s solicitor. It does not attempt to set out everything that needs to be done, but does detail the major steps and serves to put the other chapters into context.
123456
返回列表
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 04:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
本溪市| 遂平县| 古蔺县| 庄浪县| 方山县| 武强县| 北海市| 建德市| 健康| 和田县| 醴陵市| 双流县| 哈密市| 大宁县| 宣城市| 冷水江市| 托里县| 蒲城县| 玉树县| 保德县| 江华| 永胜县| 新邵县| 阜阳市| 综艺| 镇雄县| 浦东新区| 江安县| 洞头县| 信宜市| 文安县| 潮州市| 吕梁市| 石狮市| 晋宁县| 环江| 乌恰县| 凌源市| 张北县| 法库县| 威信县|