找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Theory of Ordinary Differential Equations; Po-Fang Hsieh,Yasutaka Sibuya Textbook 1999 Springer Science+Business Media New York 1999

[復制鏈接]
樓主: 滲漏
41#
發(fā)表于 2025-3-28 16:18:06 | 只看該作者
Singularities of the Second Kind,III-1,XIII-2, and XIII-3, a basic existence theorem of asymptotic solutions in the sense of Poincaré is proved in detail. In §XII-4,this result is used to prove a block-diagonalization theorem of a linear system. The materials in §§XIII-1—XIII-4 are also found in [Si7]. The main topic of §XIII-5 is
42#
發(fā)表于 2025-3-28 19:48:14 | 只看該作者
43#
發(fā)表于 2025-3-29 00:19:48 | 只看該作者
General Theory of Linear Systems,fraction decomposition of reciprocal of the characteristic polynomial. It is relatively easy to obtain this decomposition with an elementary calculation if all eigenvalues of a given matrix are known (cf. Examples IV-1-18 and IV-1-19). In §IV-2, we explain the general aspect of linear homogeneous sy
44#
發(fā)表于 2025-3-29 04:37:47 | 只看該作者
45#
發(fā)表于 2025-3-29 09:36:38 | 只看該作者
46#
發(fā)表于 2025-3-29 13:26:16 | 只看該作者
Stability,table manifolds more closely for analytic differential equations. First we change a given system by an analytic transformation to a simple standard form. By virtue of such a simplification, we can construct the stable manifold in a simple analytic form. This idea is applied to analytic systems in ?.
47#
發(fā)表于 2025-3-29 16:42:07 | 只看該作者
The Second-Order Differential Equation ,d small. This is a typical problem of regular perturbations. In §X-6, we explain how to locate the unique periodic solution of (E) geometrically as..In §X-8, we explain how to find an approximation of the periodic solution of (E) analytically as..This is a typical problem of singular perturbations.
48#
發(fā)表于 2025-3-29 23:05:45 | 只看該作者
Singularities of the Second Kind,n [Huk4] and [Tul]. In §XIII-7, the Newton polygon of a linear differential operator is defined. This polygon is useful when we calculate formal solutions of an n-th-order linear differential equation (cf. [St]). In §XIII-8, we explain asymptotic solutions in the Gevrey asymptotics. To understand ma
49#
發(fā)表于 2025-3-30 00:12:42 | 只看該作者
50#
發(fā)表于 2025-3-30 06:28:44 | 只看該作者
R. J. Geretshauser,R. Speith,W. Kleyeal] and the existence and uniqueness Theorem I-1-4 is due to é. Picard [Pi] and E. Lindel?f [Lindl, Lind2]. The extension of these local solutions to a larger interval is explained in §I-3, assuming some basic requirements for such an extension. In §I-4, using successive approximations, we explain
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-12 04:18
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
稷山县| 永靖县| 仁寿县| 株洲县| 常宁市| 垦利县| 卢湾区| 新安县| 津市市| 奉新县| 兴业县| 临沭县| 五指山市| 綦江县| 临沂市| 望江县| 资中县| 禄劝| 资中县| 英山县| 凤山县| 无为县| 沽源县| 洪湖市| 宜春市| 大邑县| 寿光市| 台北县| 会泽县| 青州市| 平凉市| 乾安县| 岑巩县| 高阳县| 团风县| 泰安市| 陵川县| 万山特区| 防城港市| 富平县| 同江市|