找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Theory of Ordinary Differential Equations; Po-Fang Hsieh,Yasutaka Sibuya Textbook 1999 Springer Science+Business Media New York 1999

[復(fù)制鏈接]
樓主: 滲漏
31#
發(fā)表于 2025-3-26 21:41:20 | 只看該作者
32#
發(fā)表于 2025-3-27 03:13:13 | 只看該作者
33#
發(fā)表于 2025-3-27 06:59:55 | 只看該作者
General Theory of Linear Systems,ued) continuous functions of a real independent variable ., and the?.-valued function.is continuous in . The existence and uniqueness of solutions of problem (LP) were given by Theorem I-3-5. In §IV-1, we explain some basic results concerning n x n matrices whose entries are complex numbers. In part
34#
發(fā)表于 2025-3-27 09:56:01 | 只看該作者
35#
發(fā)表于 2025-3-27 15:31:55 | 只看該作者
Boundary-Value Problems of Linear Differential Equations of the Second-Order,roblems (§§VI2—VI-4, topics including Green’s functions, self-adjointness, distribution of eigen-values, and eigenfunction expansion), (3) scattering problems (§§VI-5—VI-9, mostly focusing on reflectionless potentials), and (4) periodic potentials (§VI-10). The materials concerning these topics are
36#
發(fā)表于 2025-3-27 20:52:26 | 只看該作者
37#
發(fā)表于 2025-3-27 22:44:10 | 只看該作者
Stability,tems. To start with, in §VIII-1, we introduce the concepts of stability and asymptotic stability of a given particular solution as ..We illustrate those concepts with simple examples. Reducing the given solution to the trivial solution by a simple transformation, we concentrate our explanation on th
38#
發(fā)表于 2025-3-28 03:42:12 | 只看該作者
39#
發(fā)表于 2025-3-28 08:19:09 | 只看該作者
The Second-Order Differential Equation ,ndedness of solutions and apply these results to the van der Pol equation.(cf. Example X-2–5). The boundedness of solutions and the instability of the unique stationary point imply that the van der Pol equation has a nontrivial periodic solution. This is a consequence of the Poincaré-Bendixson Theor
40#
發(fā)表于 2025-3-28 11:22:08 | 只看該作者
Asymptotic Expansions,mple, as we mentioned it in Remark V-1-4, the divergent formal power series.is a formal solution of ..This equation has an actual solution .Integrating by parts,we obtain. Since.we conclude that.an asymptotic representation of an actual solution by means of a formal solution. In this chapter, we exp
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 11:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
中山市| 兰州市| 绍兴市| 柳河县| 横峰县| 博乐市| 泸定县| 微山县| 会泽县| 敖汉旗| 永丰县| 德钦县| 临西县| 登封市| 沧州市| 商都县| 新乡县| 高州市| 崇左市| 米林县| 泰来县| 防城港市| 红河县| 开鲁县| 区。| 浦北县| 荔浦县| 武冈市| 孝昌县| 沅陵县| 湘潭县| 德兴市| 桐乡市| 墨江| 咸阳市| 新宁县| 肥东县| 台北县| 泾川县| 呼伦贝尔市| 从化市|