找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Basic Theory of Ordinary Differential Equations; Po-Fang Hsieh,Yasutaka Sibuya Textbook 1999 Springer Science+Business Media New York 1999

[復(fù)制鏈接]
樓主: 滲漏
41#
發(fā)表于 2025-3-28 16:18:06 | 只看該作者
Singularities of the Second Kind,III-1,XIII-2, and XIII-3, a basic existence theorem of asymptotic solutions in the sense of Poincaré is proved in detail. In §XII-4,this result is used to prove a block-diagonalization theorem of a linear system. The materials in §§XIII-1—XIII-4 are also found in [Si7]. The main topic of §XIII-5 is
42#
發(fā)表于 2025-3-28 19:48:14 | 只看該作者
43#
發(fā)表于 2025-3-29 00:19:48 | 只看該作者
General Theory of Linear Systems,fraction decomposition of reciprocal of the characteristic polynomial. It is relatively easy to obtain this decomposition with an elementary calculation if all eigenvalues of a given matrix are known (cf. Examples IV-1-18 and IV-1-19). In §IV-2, we explain the general aspect of linear homogeneous sy
44#
發(fā)表于 2025-3-29 04:37:47 | 只看該作者
45#
發(fā)表于 2025-3-29 09:36:38 | 只看該作者
46#
發(fā)表于 2025-3-29 13:26:16 | 只看該作者
Stability,table manifolds more closely for analytic differential equations. First we change a given system by an analytic transformation to a simple standard form. By virtue of such a simplification, we can construct the stable manifold in a simple analytic form. This idea is applied to analytic systems in ?.
47#
發(fā)表于 2025-3-29 16:42:07 | 只看該作者
The Second-Order Differential Equation ,d small. This is a typical problem of regular perturbations. In §X-6, we explain how to locate the unique periodic solution of (E) geometrically as..In §X-8, we explain how to find an approximation of the periodic solution of (E) analytically as..This is a typical problem of singular perturbations.
48#
發(fā)表于 2025-3-29 23:05:45 | 只看該作者
Singularities of the Second Kind,n [Huk4] and [Tul]. In §XIII-7, the Newton polygon of a linear differential operator is defined. This polygon is useful when we calculate formal solutions of an n-th-order linear differential equation (cf. [St]). In §XIII-8, we explain asymptotic solutions in the Gevrey asymptotics. To understand ma
49#
發(fā)表于 2025-3-30 00:12:42 | 只看該作者
50#
發(fā)表于 2025-3-30 06:28:44 | 只看該作者
R. J. Geretshauser,R. Speith,W. Kleyeal] and the existence and uniqueness Theorem I-1-4 is due to é. Picard [Pi] and E. Lindel?f [Lindl, Lind2]. The extension of these local solutions to a larger interval is explained in §I-3, assuming some basic requirements for such an extension. In §I-4, using successive approximations, we explain
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 06:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泸溪县| 印江| 临高县| 建阳市| 合阳县| 青河县| 两当县| 米易县| 福州市| 高尔夫| 巴彦县| 安平县| 县级市| 海伦市| 遂宁市| 建湖县| 中宁县| 广丰县| 普洱| 临城县| 昭觉县| 高平市| 治县。| 西乌| 佳木斯市| 南和县| 昌平区| 宁波市| 榆社县| 兴化市| 朝阳区| 宜良县| 惠水县| 大厂| 昌黎县| 汪清县| 休宁县| 竹山县| 芒康县| 伊宁市| 循化|