找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Associahedra, Tamari Lattices and Related Structures; Tamari Memorial Fest Folkert Müller-Hoissen,Jean Marcel Pallo,Jim Stash Book 2012 Spr

[復(fù)制鏈接]
樓主: SORB
21#
發(fā)表于 2025-3-25 06:17:05 | 只看該作者
Formal Models of Communicating Systemsess is an important aspect. The free structures are described in various ways using wellformed words (in the spirit of some of Tamari’s papers), using string diagrams leading to forests, and in terms of rewrite rules.
22#
發(fā)表于 2025-3-25 08:58:34 | 只看該作者
23#
發(fā)表于 2025-3-25 13:58:33 | 只看該作者
24#
發(fā)表于 2025-3-25 19:27:29 | 只看該作者
25#
發(fā)表于 2025-3-25 23:39:45 | 只看該作者
Communicating Finite-State Machines,s the Stasheff polytope or associahedron. Our goal is to describe a partial order on the set of tubings of a simple graph, which generalizes the Tamari order on the set of vertices of the associahedron. For certain families of graphs, this order induces an associative product on the vector space spa
26#
發(fā)表于 2025-3-26 00:50:24 | 只看該作者
27#
發(fā)表于 2025-3-26 04:53:19 | 只看該作者
Partial Groupoid Embeddings in Semigroups,upoid and the Gensemer/Weinert equidivisible partial groupoid, provided they satisfy an additional axiom, weak associativity. Both structures share the one mountain property. More embedding results for partial groupoids into other types of algebraic structures are presented as well.
28#
發(fā)表于 2025-3-26 09:31:32 | 只看該作者
Parenthetic Remarks,ess is an important aspect. The free structures are described in various ways using wellformed words (in the spirit of some of Tamari’s papers), using string diagrams leading to forests, and in terms of rewrite rules.
29#
發(fā)表于 2025-3-26 15:51:23 | 只看該作者
30#
發(fā)表于 2025-3-26 18:01:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 02:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
四会市| 博湖县| 凤台县| 湟源县| 泰宁县| 丹寨县| 嘉禾县| 连南| 馆陶县| 丹阳市| 威海市| 崇明县| 东山县| 友谊县| 阿勒泰市| 泽州县| 肥乡县| 定结县| 黑水县| 万州区| 阿尔山市| 淳安县| 安康市| 县级市| 荥阳市| 东城区| 湖南省| 锦州市| 玉山县| 沐川县| 仙居县| 天柱县| 锦州市| 牙克石市| 万年县| 友谊县| 肥东县| 慈溪市| 隆尧县| 阜城县| 灵丘县|