找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Associahedra, Tamari Lattices and Related Structures; Tamari Memorial Fest Folkert Müller-Hoissen,Jean Marcel Pallo,Jim Stash Book 2012 Spr

[復(fù)制鏈接]
樓主: SORB
31#
發(fā)表于 2025-3-27 00:50:54 | 只看該作者
32#
發(fā)表于 2025-3-27 02:07:56 | 只看該作者
KP Solitons, Higher Bruhat and Tamari Orders,(KP-II) equation, determines a chain of planar rooted binary trees, connected by right rotation. More precisely, it determines a maximal chain of a Tamari lattice. We show that an analysis of these solutions naturally involves higher Bruhat and higher Tamari orders.
33#
發(fā)表于 2025-3-27 06:57:50 | 只看該作者
Martin K?lbl,Stefan Leue,Robert SchmidThe life of Dov Tamari is described, including a brief introduction to his mathematical work.
34#
發(fā)表于 2025-3-27 13:17:54 | 只看該作者
https://doi.org/10.1007/978-3-658-09994-7I reminisce about being a student of Dov Tamari at the State University of New York at Buffalo in the late 1960’s.
35#
發(fā)表于 2025-3-27 15:48:22 | 只看該作者
https://doi.org/10.1007/978-3-319-48832-5There are many open problems and some mysteries connected to the realizations of the associahedra as convex polytopes. In this note, we describe three – concerning special realizations with the vertices on a sphere, the space of all possible realizations, and possible realizations of the multiassociahedron.
36#
發(fā)表于 2025-3-27 20:32:35 | 只看該作者
P. Fr?hlich,I. Móra,W. Nejdl,M. SchroederPermutahedra are a class of convex polytopes arising naturally from the study of finite reflection groups, while generalized associahedra are a class of polytopes indexed by finite reflection groups. We present the intimate links those two classes of polytopes share.
37#
發(fā)表于 2025-3-28 01:26:33 | 只看該作者
Lecture Notes in Computer ScienceWe study a class of simple polytopes, called 2-truncated cubes. These polytopes have remarkable properties and, in particular, satisfy Gal’s conjecture. Well-known polytopes (flag nestohedra, graph-associahedra and graph-cubeahedra) are 2-truncated cubes.
38#
發(fā)表于 2025-3-28 03:03:56 | 只看該作者
Graphs, Logics, and Graph Acceptors,In this chapter, we explain how the Tamari lattice arises in the context of the representation theory of quivers, as the poset whose elements are the torsion classes of a directed path quiver, with the order relation given by inclusion.
39#
發(fā)表于 2025-3-28 09:30:34 | 只看該作者
40#
發(fā)表于 2025-3-28 13:44:32 | 只看該作者
Dov Tamari (formerly Bernhard Teitler),The life of Dov Tamari is described, including a brief introduction to his mathematical work.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 05:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
奉贤区| 分宜县| 教育| 运城市| 江川县| 巴楚县| 兰州市| 武鸣县| 宜城市| 克山县| 墨竹工卡县| 乾安县| 鹿泉市| 淅川县| 唐海县| 新乡县| 商南县| 海门市| 都匀市| 通化县| 内江市| 忻州市| 双牌县| 道真| 靖安县| 兴海县| 海门市| 武陟县| 嘉黎县| 酉阳| 南陵县| 许昌市| 蒲江县| 同心县| 辛集市| 阳高县| 康平县| 清流县| 松滋市| 确山县| 上思县|