找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Associahedra, Tamari Lattices and Related Structures; Tamari Memorial Fest Folkert Müller-Hoissen,Jean Marcel Pallo,Jim Stash Book 2012 Spr

[復制鏈接]
樓主: SORB
31#
發(fā)表于 2025-3-27 00:50:54 | 只看該作者
32#
發(fā)表于 2025-3-27 02:07:56 | 只看該作者
KP Solitons, Higher Bruhat and Tamari Orders,(KP-II) equation, determines a chain of planar rooted binary trees, connected by right rotation. More precisely, it determines a maximal chain of a Tamari lattice. We show that an analysis of these solutions naturally involves higher Bruhat and higher Tamari orders.
33#
發(fā)表于 2025-3-27 06:57:50 | 只看該作者
Martin K?lbl,Stefan Leue,Robert SchmidThe life of Dov Tamari is described, including a brief introduction to his mathematical work.
34#
發(fā)表于 2025-3-27 13:17:54 | 只看該作者
https://doi.org/10.1007/978-3-658-09994-7I reminisce about being a student of Dov Tamari at the State University of New York at Buffalo in the late 1960’s.
35#
發(fā)表于 2025-3-27 15:48:22 | 只看該作者
https://doi.org/10.1007/978-3-319-48832-5There are many open problems and some mysteries connected to the realizations of the associahedra as convex polytopes. In this note, we describe three – concerning special realizations with the vertices on a sphere, the space of all possible realizations, and possible realizations of the multiassociahedron.
36#
發(fā)表于 2025-3-27 20:32:35 | 只看該作者
P. Fr?hlich,I. Móra,W. Nejdl,M. SchroederPermutahedra are a class of convex polytopes arising naturally from the study of finite reflection groups, while generalized associahedra are a class of polytopes indexed by finite reflection groups. We present the intimate links those two classes of polytopes share.
37#
發(fā)表于 2025-3-28 01:26:33 | 只看該作者
Lecture Notes in Computer ScienceWe study a class of simple polytopes, called 2-truncated cubes. These polytopes have remarkable properties and, in particular, satisfy Gal’s conjecture. Well-known polytopes (flag nestohedra, graph-associahedra and graph-cubeahedra) are 2-truncated cubes.
38#
發(fā)表于 2025-3-28 03:03:56 | 只看該作者
Graphs, Logics, and Graph Acceptors,In this chapter, we explain how the Tamari lattice arises in the context of the representation theory of quivers, as the poset whose elements are the torsion classes of a directed path quiver, with the order relation given by inclusion.
39#
發(fā)表于 2025-3-28 09:30:34 | 只看該作者
40#
發(fā)表于 2025-3-28 13:44:32 | 只看該作者
Dov Tamari (formerly Bernhard Teitler),The life of Dov Tamari is described, including a brief introduction to his mathematical work.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 02:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
沈丘县| 长寿区| 静宁县| 玉溪市| 松滋市| 西林县| 嫩江县| 景德镇市| 淮滨县| 东乌珠穆沁旗| 百色市| 方正县| 塔城市| 邵东县| 共和县| 桐城市| 色达县| 双江| 湘乡市| 邛崃市| 永城市| 隆子县| 绍兴市| 天等县| 桐梓县| 阳高县| 诏安县| 东安县| 石泉县| 定边县| 景泰县| 武安市| 绩溪县| 贵溪市| 乌审旗| 东山县| 江都市| 和田市| 镇原县| 习水县| 石阡县|