找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Associahedra, Tamari Lattices and Related Structures; Tamari Memorial Fest Folkert Müller-Hoissen,Jean Marcel Pallo,Jim Stash Book 2012 Spr

[復(fù)制鏈接]
樓主: SORB
41#
發(fā)表于 2025-3-28 15:34:49 | 只看該作者
42#
發(fā)表于 2025-3-28 19:55:02 | 只看該作者
Realizing the Associahedron: Mysteries and Questions,There are many open problems and some mysteries connected to the realizations of the associahedra as convex polytopes. In this note, we describe three – concerning special realizations with the vertices on a sphere, the space of all possible realizations, and possible realizations of the multiassociahedron.
43#
發(fā)表于 2025-3-29 00:29:45 | 只看該作者
44#
發(fā)表于 2025-3-29 03:08:52 | 只看該作者
Combinatorial 2-truncated Cubes and Applications,We study a class of simple polytopes, called 2-truncated cubes. These polytopes have remarkable properties and, in particular, satisfy Gal’s conjecture. Well-known polytopes (flag nestohedra, graph-associahedra and graph-cubeahedra) are 2-truncated cubes.
45#
發(fā)表于 2025-3-29 09:12:55 | 只看該作者
46#
發(fā)表于 2025-3-29 14:22:40 | 只看該作者
A Survey of the Higher Stasheff-Tamari Orders,The Tamari lattice, thought as a poset on the set of triangulations of a convex polygon with . vertices, generalizes to the higher Stasheff-Tamari orders on the set of triangulations of a cyclic .-dimensional polytope having . vertices. This survey discusses what is known about these orders, and what one would like to know about them.
47#
發(fā)表于 2025-3-29 17:35:41 | 只看該作者
https://doi.org/10.1007/978-3-0348-0405-9Tamari lattice; associahedron; associativity; polytope; poset
48#
發(fā)表于 2025-3-29 19:53:49 | 只看該作者
49#
發(fā)表于 2025-3-30 01:35:07 | 只看該作者
Formal Models in the Study of Languageupoid and the Gensemer/Weinert equidivisible partial groupoid, provided they satisfy an additional axiom, weak associativity. Both structures share the one mountain property. More embedding results for partial groupoids into other types of algebraic structures are presented as well.
50#
發(fā)表于 2025-3-30 05:22:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 02:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西城区| 厦门市| 于田县| 岫岩| 射洪县| 庆元县| 德江县| 亚东县| 上思县| 那坡县| 江门市| 舞阳县| 莱芜市| 读书| 灵川县| 永嘉县| 林芝县| 鹿邑县| 桓仁| 手游| 勃利县| 华容县| 清流县| 应城市| 乳源| 东乌珠穆沁旗| 镇康县| 乌拉特中旗| 阿拉尔市| 宁海县| 陆河县| 凉山| 唐海县| 庆安县| 肃北| 桓台县| 广元市| 沈丘县| 乌拉特中旗| 永修县| 灌南县|