找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Topics in m-adic Topologies; Silvio Greco,Paolo Salmon Book 1971 Springer-Verlag Berlin · Heidelberg 1971 Topologies.algebra.algebraic geo

[復(fù)制鏈接]
查看: 11789|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:31:58 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Topics in m-adic Topologies
編輯Silvio Greco,Paolo Salmon
視頻videohttp://file.papertrans.cn/927/926324/926324.mp4
叢書名稱Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge
圖書封面Titlebook: Topics in m-adic Topologies;  Silvio Greco,Paolo Salmon Book 1971 Springer-Verlag Berlin · Heidelberg 1971 Topologies.algebra.algebraic geo
描述The m-adic topologies and, in particular the notions of m-complete ring and m-completion A of a commutative ring A, occur frequently in commutative algebra and are also a useful tool in algebraic geometry. The aim of this work is to collect together some criteria concerning the ascent (from A to A) and the descent (from A to A) of several properties of commutative rings such as, for example: integrity, regularity, factoriality, normality, etc. More precisely, we want to show that many of the above criteria, although not trivial at all, are elementary consequences of some fundamental notions of commutative algebra and local algebra. Sometimes we are able to get only partial results, which probably can be improved by further deeper investigations. No new result has been included in this work. Its only origi- nality is the choice of material and the mode of presentation. The comprehension of the most important statements included in this book needs only a very elementary background in algebra, ideal theory and general topology. In order to emphasize the elementary character of our treatment, we have recalled several well known definitions and, sometimes, even the proofs of the first p
出版日期Book 1971
關(guān)鍵詞Topologies; algebra; algebraic geometry; commutative algebra; homomorphism; m-adische Topologie; ring; topo
版次1
doihttps://doi.org/10.1007/978-3-642-88501-3
isbn_softcover978-3-642-88503-7
isbn_ebook978-3-642-88501-3
copyrightSpringer-Verlag Berlin · Heidelberg 1971
The information of publication is updating

書目名稱Topics in m-adic Topologies影響因子(影響力)




書目名稱Topics in m-adic Topologies影響因子(影響力)學(xué)科排名




書目名稱Topics in m-adic Topologies網(wǎng)絡(luò)公開(kāi)度




書目名稱Topics in m-adic Topologies網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Topics in m-adic Topologies被引頻次




書目名稱Topics in m-adic Topologies被引頻次學(xué)科排名




書目名稱Topics in m-adic Topologies年度引用




書目名稱Topics in m-adic Topologies年度引用學(xué)科排名




書目名稱Topics in m-adic Topologies讀者反饋




書目名稱Topics in m-adic Topologies讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:43:24 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:44:23 | 只看該作者
地板
發(fā)表于 2025-3-22 08:21:14 | 只看該作者
Completions of finitely generated modules. Flatness and faithful flatness,In this paragraph we shall consider essentially completions of finitely generated modules, in particular finitely generated modules over a noetherian ring ..
5#
發(fā)表于 2025-3-22 10:48:41 | 只看該作者
Noetherian properties of m-adic completions,The aim of this paragraph is to show that the noetherian property is preserved by ?-adic completions. Using some facts stated in § 3, it is now possible to give an immediate proof of this result.
6#
發(fā)表于 2025-3-22 16:16:14 | 只看該作者
7#
發(fā)表于 2025-3-22 18:39:29 | 只看該作者
Dimension of m-completions,We recall the classical definition of the dimension (Krull dimension) of a commutative ring ..
8#
發(fā)表于 2025-3-22 23:13:55 | 只看該作者
9#
發(fā)表于 2025-3-23 04:17:19 | 只看該作者
10#
發(fā)表于 2025-3-23 08:20:08 | 只看該作者
Integrity of m-completions,In this section we show (Th. 10.6) that with suitable conditions on the rings . and ./?, the ?-completion of . is a domain. ..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 21:19
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巫溪县| 博湖县| 华蓥市| 通海县| 万载县| 阿荣旗| 凤翔县| 滨海县| 宁明县| 福泉市| 工布江达县| 庆云县| 昌江| 西宁市| 元氏县| 麻阳| 南开区| 成都市| 怀宁县| 黎城县| 宾川县| 威海市| 西贡区| 大新县| 若羌县| 和林格尔县| 灵台县| 醴陵市| 临漳县| 临武县| 景泰县| 万年县| 潼关县| 涞水县| 湖口县| 渝北区| 定结县| 临泽县| 灌阳县| 黄平县| 汉源县|