找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Topics in m-adic Topologies; Silvio Greco,Paolo Salmon Book 1971 Springer-Verlag Berlin · Heidelberg 1971 Topologies.algebra.algebraic geo

[復(fù)制鏈接]
樓主: 候選人名單
11#
發(fā)表于 2025-3-23 11:50:56 | 只看該作者
Unique factorization of m-completions,Let . be an integral domain. We say that . is . (or a Unique Factorization Domain) if every element . ∈ . ≠ 0 and non-unit, has an essentially unique decomposition in irreducible factors. Here “essentially” means “up to unit factors and permutations of the factors”.
12#
發(fā)表于 2025-3-23 17:39:14 | 只看該作者
13#
發(fā)表于 2025-3-23 19:03:06 | 只看該作者
14#
發(fā)表于 2025-3-23 22:25:19 | 只看該作者
Analytic reducedness,In this section we shall give some sufficient conditions for the reducedness of ?-adic completions which are related to the radical of the completion of an ideal. ..
15#
發(fā)表于 2025-3-24 05:48:40 | 只看該作者
Normality of m-completions,Let . a ring and . a subring of .. An element . ∈. is said to be . over . if there are .,..., . ∈. such that . + ··· + . + . . (. > 0). The ring . is said to be . if every element of . which is integral over . is an element of .. Finally a domain . is said to be . if . is integrally closed in its quotient field.
16#
發(fā)表于 2025-3-24 06:47:05 | 只看該作者
17#
發(fā)表于 2025-3-24 12:42:52 | 只看該作者
Completions of filtered groups, rings and modules. Applications to m-adic topologies,.. It is clear that .(.) = ∞ if and only if . (lemma 1.1). The mapping allows us to define a . in .: let . be the mapping defined by .(.) = . (we agree that . = 0). Then it is easy to see that . and that . defines in . the topology induced by the filtration (.).
18#
發(fā)表于 2025-3-24 17:15:10 | 只看該作者
19#
發(fā)表于 2025-3-24 22:25:02 | 只看該作者
20#
發(fā)表于 2025-3-25 02:08:18 | 只看該作者
Silvio Greco,Paolo Salmonhey have wherein they have lavished out their words freely hath been so long, that they know we cannot catch hold of them to pull them out and they think that we will not write to reprove their lying lips.”. Two decades later, Constantia Munda also wrote scornfully of men, “And Printing, that was in
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 00:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
夹江县| 兴山县| 郎溪县| 浦东新区| 太仓市| 西城区| 乡城县| 寿光市| 米林县| 马边| 红安县| 澄江县| 德钦县| 盐津县| 台山市| 井研县| 綦江县| 花垣县| 威海市| 凤台县| 忻城县| 垦利县| 三门县| 红桥区| 泰兴市| 同江市| 阿荣旗| 麻栗坡县| 泗洪县| 社旗县| 福贡县| 文化| 叙永县| 承德县| 荣昌县| 康定县| 营口市| 龙海市| 池州市| 咸丰县| 师宗县|