找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Topics in m-adic Topologies; Silvio Greco,Paolo Salmon Book 1971 Springer-Verlag Berlin · Heidelberg 1971 Topologies.algebra.algebraic geo

[復(fù)制鏈接]
樓主: 候選人名單
11#
發(fā)表于 2025-3-23 11:50:56 | 只看該作者
Unique factorization of m-completions,Let . be an integral domain. We say that . is . (or a Unique Factorization Domain) if every element . ∈ . ≠ 0 and non-unit, has an essentially unique decomposition in irreducible factors. Here “essentially” means “up to unit factors and permutations of the factors”.
12#
發(fā)表于 2025-3-23 17:39:14 | 只看該作者
13#
發(fā)表于 2025-3-23 19:03:06 | 只看該作者
14#
發(fā)表于 2025-3-23 22:25:19 | 只看該作者
Analytic reducedness,In this section we shall give some sufficient conditions for the reducedness of ?-adic completions which are related to the radical of the completion of an ideal. ..
15#
發(fā)表于 2025-3-24 05:48:40 | 只看該作者
Normality of m-completions,Let . a ring and . a subring of .. An element . ∈. is said to be . over . if there are .,..., . ∈. such that . + ··· + . + . . (. > 0). The ring . is said to be . if every element of . which is integral over . is an element of .. Finally a domain . is said to be . if . is integrally closed in its quotient field.
16#
發(fā)表于 2025-3-24 06:47:05 | 只看該作者
17#
發(fā)表于 2025-3-24 12:42:52 | 只看該作者
Completions of filtered groups, rings and modules. Applications to m-adic topologies,.. It is clear that .(.) = ∞ if and only if . (lemma 1.1). The mapping allows us to define a . in .: let . be the mapping defined by .(.) = . (we agree that . = 0). Then it is easy to see that . and that . defines in . the topology induced by the filtration (.).
18#
發(fā)表于 2025-3-24 17:15:10 | 只看該作者
19#
發(fā)表于 2025-3-24 22:25:02 | 只看該作者
20#
發(fā)表于 2025-3-25 02:08:18 | 只看該作者
Silvio Greco,Paolo Salmonhey have wherein they have lavished out their words freely hath been so long, that they know we cannot catch hold of them to pull them out and they think that we will not write to reprove their lying lips.”. Two decades later, Constantia Munda also wrote scornfully of men, “And Printing, that was in
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 11:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
虹口区| 武强县| 夹江县| 娱乐| 延寿县| 灵川县| 乌拉特中旗| 龙山县| 葵青区| 嫩江县| 浦城县| 鹰潭市| 清涧县| 清徐县| 灵宝市| 二连浩特市| 宣威市| 甘南县| 寿宁县| 婺源县| 蒙山县| 柞水县| 基隆市| 公安县| 始兴县| 万州区| 吉木萨尔县| 宣武区| 和硕县| 吐鲁番市| 舒城县| 温宿县| 乡城县| 南岸区| 龙门县| 秦安县| 达孜县| 镇安县| 巴塘县| 涞水县| 西乡县|