找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Seminar on Dynamical Systems; Euler International S. Kuksin,V. Lazutkin,J. P?schel Book 1994 Springer Basel AG 1994 Kolmogorov–Arnold–Mose

[復(fù)制鏈接]
樓主: LEVEE
31#
發(fā)表于 2025-3-26 22:18:05 | 只看該作者
32#
發(fā)表于 2025-3-27 03:05:51 | 只看該作者
Luigi Chierchia,Paolo Perfettieven while many experience and express unease about many of its policies. In this chapter, we seek to explain how Israel is a compelling component of Jewish identity for young people even while some are ambivalent about its policies and actions. We explore how connections and commitment to Israel ta
33#
發(fā)表于 2025-3-27 07:54:45 | 只看該作者
34#
發(fā)表于 2025-3-27 12:55:16 | 只看該作者
locaust history. Although research has been conducted on the work of Jewish doctors in ghettoes, a facet of the Holocaust that until recently has been ignored is the history of the life and work of European Jewish doctors leading up to the Holocaust from the beginning of the twentieth century and th
35#
發(fā)表于 2025-3-27 15:49:11 | 只看該作者
36#
發(fā)表于 2025-3-27 19:08:05 | 只看該作者
37#
發(fā)表于 2025-3-28 01:01:10 | 只看該作者
38#
發(fā)表于 2025-3-28 04:18:45 | 只看該作者
39#
發(fā)表于 2025-3-28 08:55:46 | 只看該作者
Exponentially Small Expressions for Separatrix Splittingsrefore their size is ., where . is the pole of the derivative of the homoclinic solution of the unperturbed equation, and . its order. The main ideas of the proof of these asymptotic formulas are presented, assuming . ≥ . 1, and that the first Fourier coefficients of the Poincaré-Melnikov function . are different from zero.
40#
發(fā)表于 2025-3-28 10:47:46 | 只看該作者
A Note on the Existence of Heteroclinic Orbits in the Planar Three-Body Problem at infinity is also given. The problem is considered as a perturbation of two two-body problems, an elliptic one and a parabolic one. The results obtained and the methods used are natural modifications of the corresponding ones for the planar restricted elliptic three-body problem, recently studied in [M-P].
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 03:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
奎屯市| 宁乡县| 沂水县| 白沙| 攀枝花市| 道孚县| 四川省| 北辰区| 晴隆县| 内江市| 郴州市| 金寨县| 尉氏县| 凤凰县| 蒙山县| 吴川市| 嘉兴市| 手游| 汶上县| 余姚市| 普兰县| 遂溪县| 湟源县| 葫芦岛市| 泸西县| 襄汾县| 黄冈市| 大姚县| 德保县| 桃园市| 江阴市| 永城市| 迭部县| 嘉义市| 德令哈市| 民丰县| 嘉峪关市| 都匀市| 普格县| 青川县| 龙陵县|