找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Seminar on Dynamical Systems; Euler International S. Kuksin,V. Lazutkin,J. P?schel Book 1994 Springer Basel AG 1994 Kolmogorov–Arnold–Mose

[復(fù)制鏈接]
樓主: LEVEE
41#
發(fā)表于 2025-3-28 16:33:51 | 只看該作者
On the Frequencies of Quasi Periodic Solutions of Analytic Nearly Integrable Hamiltonian Systems the one of Arnol’d [2] and Moser [7] in so far as rapid convergence of the iteration process does not take place. In fact, in conjugacy problems without small divisors our approach coincides with the ordinary Lipschitz iteration. On the other hand, the utmost of possible influence of the small divisors is admitted.
42#
發(fā)表于 2025-3-28 19:34:29 | 只看該作者
43#
發(fā)表于 2025-3-29 02:59:05 | 只看該作者
The Dynamical Foundations of Classical Statistical Mechanics and the Boltzmann-Jeans Conjectureulty with classical statistical mechanics is that some degrees of freedom seem to be frozen, and not to attain the energy expected from that principle. The problem we want to discuss here is whether such a phenomenon can be understood on a dynamical basis.
44#
發(fā)表于 2025-3-29 03:16:22 | 只看該作者
45#
發(fā)表于 2025-3-29 11:16:25 | 只看該作者
46#
發(fā)表于 2025-3-29 12:13:58 | 只看該作者
Exponentially Small Expressions for Separatrix Splittingsere . and . are independent small parameters. These asymptotical expressions coincide with the ones predicted by the Poincaré-Melnikov theory, and therefore their size is ., where . is the pole of the derivative of the homoclinic solution of the unperturbed equation, and . its order. The main ideas
47#
發(fā)表于 2025-3-29 18:23:33 | 只看該作者
48#
發(fā)表于 2025-3-29 22:23:51 | 只看該作者
Periodic Metrics complete manifold . possessing an isometry group . with a compact quotient .. The word “global” means here that we study “l(fā)arge” objects and do not care of the measurement error of order diam(.). We consider here only a special (but rather natural) case when . is a perturbation (not necessarily sma
49#
發(fā)表于 2025-3-30 00:43:28 | 只看該作者
On the Inclusion of Analytic Symplectic Maps in Analytic Hamiltonian Flows and Its Applications the underlying symplectic structure is exact, then this diffeomorphism is exact symplectic. Thus one may ask what the set of all maps arising this way looks like. That is, which exact symplectic diffeomorphisms homotopic to the identity can be included in the flow of a hamiltonian vector field?
50#
發(fā)表于 2025-3-30 08:01:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 23:35
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
托克托县| 孟连| 雅江县| 阳江市| 文安县| 连山| 虞城县| 临澧县| 元朗区| 乃东县| 洪江市| 奇台县| 民勤县| 桑日县| 南陵县| 麟游县| 隆尧县| 锡林郭勒盟| 淮滨县| 闸北区| 柳江县| 霍林郭勒市| 彭山县| 湛江市| 文山县| 霍邱县| 山西省| 宁远县| 武城县| 沾益县| 洱源县| 松桃| 孟村| 枞阳县| 红安县| 吴川市| 友谊县| 抚州市| 古浪县| 陇南市| 通道|