找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Seminar on Dynamical Systems; Euler International S. Kuksin,V. Lazutkin,J. P?schel Book 1994 Springer Basel AG 1994 Kolmogorov–Arnold–Mose

[復制鏈接]
樓主: LEVEE
41#
發(fā)表于 2025-3-28 16:33:51 | 只看該作者
On the Frequencies of Quasi Periodic Solutions of Analytic Nearly Integrable Hamiltonian Systems the one of Arnol’d [2] and Moser [7] in so far as rapid convergence of the iteration process does not take place. In fact, in conjugacy problems without small divisors our approach coincides with the ordinary Lipschitz iteration. On the other hand, the utmost of possible influence of the small divisors is admitted.
42#
發(fā)表于 2025-3-28 19:34:29 | 只看該作者
43#
發(fā)表于 2025-3-29 02:59:05 | 只看該作者
The Dynamical Foundations of Classical Statistical Mechanics and the Boltzmann-Jeans Conjectureulty with classical statistical mechanics is that some degrees of freedom seem to be frozen, and not to attain the energy expected from that principle. The problem we want to discuss here is whether such a phenomenon can be understood on a dynamical basis.
44#
發(fā)表于 2025-3-29 03:16:22 | 只看該作者
45#
發(fā)表于 2025-3-29 11:16:25 | 只看該作者
46#
發(fā)表于 2025-3-29 12:13:58 | 只看該作者
Exponentially Small Expressions for Separatrix Splittingsere . and . are independent small parameters. These asymptotical expressions coincide with the ones predicted by the Poincaré-Melnikov theory, and therefore their size is ., where . is the pole of the derivative of the homoclinic solution of the unperturbed equation, and . its order. The main ideas
47#
發(fā)表于 2025-3-29 18:23:33 | 只看該作者
48#
發(fā)表于 2025-3-29 22:23:51 | 只看該作者
Periodic Metrics complete manifold . possessing an isometry group . with a compact quotient .. The word “global” means here that we study “l(fā)arge” objects and do not care of the measurement error of order diam(.). We consider here only a special (but rather natural) case when . is a perturbation (not necessarily sma
49#
發(fā)表于 2025-3-30 00:43:28 | 只看該作者
On the Inclusion of Analytic Symplectic Maps in Analytic Hamiltonian Flows and Its Applications the underlying symplectic structure is exact, then this diffeomorphism is exact symplectic. Thus one may ask what the set of all maps arising this way looks like. That is, which exact symplectic diffeomorphisms homotopic to the identity can be included in the flow of a hamiltonian vector field?
50#
發(fā)表于 2025-3-30 08:01:05 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 08:57
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
广宗县| 山东省| 莱芜市| 理塘县| 宣武区| 玉田县| 新巴尔虎右旗| 出国| 浏阳市| 岱山县| 鄱阳县| 东平县| 大兴区| 林州市| 青田县| 宁强县| 宣恩县| 牡丹江市| 陵川县| 水富县| 社旗县| 无极县| 毕节市| 张家川| 太仓市| 宜宾县| 垣曲县| 遂平县| 察隅县| 甘南县| 随州市| 轮台县| 阿尔山市| 沂南县| 永春县| 安福县| 双牌县| 通城县| 苏州市| 无极县| 南木林县|