找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Seminar on Dynamical Systems; Euler International S. Kuksin,V. Lazutkin,J. P?schel Book 1994 Springer Basel AG 1994 Kolmogorov–Arnold–Mose

[復制鏈接]
樓主: LEVEE
41#
發(fā)表于 2025-3-28 16:33:51 | 只看該作者
On the Frequencies of Quasi Periodic Solutions of Analytic Nearly Integrable Hamiltonian Systems the one of Arnol’d [2] and Moser [7] in so far as rapid convergence of the iteration process does not take place. In fact, in conjugacy problems without small divisors our approach coincides with the ordinary Lipschitz iteration. On the other hand, the utmost of possible influence of the small divisors is admitted.
42#
發(fā)表于 2025-3-28 19:34:29 | 只看該作者
43#
發(fā)表于 2025-3-29 02:59:05 | 只看該作者
The Dynamical Foundations of Classical Statistical Mechanics and the Boltzmann-Jeans Conjectureulty with classical statistical mechanics is that some degrees of freedom seem to be frozen, and not to attain the energy expected from that principle. The problem we want to discuss here is whether such a phenomenon can be understood on a dynamical basis.
44#
發(fā)表于 2025-3-29 03:16:22 | 只看該作者
45#
發(fā)表于 2025-3-29 11:16:25 | 只看該作者
46#
發(fā)表于 2025-3-29 12:13:58 | 只看該作者
Exponentially Small Expressions for Separatrix Splittingsere . and . are independent small parameters. These asymptotical expressions coincide with the ones predicted by the Poincaré-Melnikov theory, and therefore their size is ., where . is the pole of the derivative of the homoclinic solution of the unperturbed equation, and . its order. The main ideas
47#
發(fā)表于 2025-3-29 18:23:33 | 只看該作者
48#
發(fā)表于 2025-3-29 22:23:51 | 只看該作者
Periodic Metrics complete manifold . possessing an isometry group . with a compact quotient .. The word “global” means here that we study “l(fā)arge” objects and do not care of the measurement error of order diam(.). We consider here only a special (but rather natural) case when . is a perturbation (not necessarily sma
49#
發(fā)表于 2025-3-30 00:43:28 | 只看該作者
On the Inclusion of Analytic Symplectic Maps in Analytic Hamiltonian Flows and Its Applications the underlying symplectic structure is exact, then this diffeomorphism is exact symplectic. Thus one may ask what the set of all maps arising this way looks like. That is, which exact symplectic diffeomorphisms homotopic to the identity can be included in the flow of a hamiltonian vector field?
50#
發(fā)表于 2025-3-30 08:01:05 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-6 08:57
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
巴里| 南雄市| 留坝县| 桦南县| 乌鲁木齐市| 丘北县| 象州县| 南雄市| 孝义市| 专栏| 龙南县| 定兴县| 平江县| 襄汾县| 万州区| 沈阳市| 凉城县| 岑溪市| 孟村| 盱眙县| 安龙县| 内丘县| 修水县| 乐昌市| 六枝特区| 突泉县| 固镇县| 桃江县| 连州市| 镇原县| 温泉县| 尚义县| 磐石市| 明光市| 铁力市| 庆安县| 同江市| 梨树县| 荃湾区| 房山区| 青海省|