找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Riemannian Geometry of Contact and Symplectic Manifolds; David E. Blair Book 2010Latest edition Springer Science+Business Media LLC 2010 D

[復制鏈接]
查看: 45890|回復: 50
樓主
發(fā)表于 2025-3-21 17:56:42 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Riemannian Geometry of Contact and Symplectic Manifolds
編輯David E. Blair
視頻videohttp://file.papertrans.cn/831/830318/830318.mp4
概述New material in most chapters.Major new topics are covered such as a complex geodesic flow and the accompanying geometry of the projectivized holomorphic tangent bundle.Improvements and general correc
叢書名稱Progress in Mathematics
圖書封面Titlebook: Riemannian Geometry of Contact and Symplectic Manifolds;  David E. Blair Book 2010Latest edition Springer Science+Business Media LLC 2010 D
描述.This second edition, divided into fourteen chapters, presents a comprehensive treatment of contact and symplectic manifolds from the Riemannian point of view. The monograph examines the basic ideas in detail and provides many illustrative examples for the reader...Riemannian Geometry of Contact and Symplectic Manifolds, Second Edition. provides new material in most chapters, but a particular emphasis remains on contact manifolds. New principal topics include a complex geodesic flow and the accompanying geometry of the projectivized holomorphic tangent bundle and a complex version of the special directions discussed in Chapter 11 for the real case. Both of these topics make use of étienne Ghys‘s attractive notion of a holomorphic Anosov flow...Researchers, mathematicians, and graduate students in contact and symplectic manifold theory and in Riemannian geometry will benefit from this work. A basic course in Riemannian geometry is a prerequisite...Reviews from the First Edition:.."The book . . . can be used either as an introduction to the subject or as a reference for students and researchers . . . [it] gives a clear and complete account of the main ideas . . . and studies a vast a
出版日期Book 2010Latest edition
關鍵詞Differential Geometry; Differential Topology; Manifolds; Riemannian geometry; curvature; manifold; symplec
版次2
doihttps://doi.org/10.1007/978-0-8176-4959-3
isbn_ebook978-0-8176-4959-3Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Science+Business Media LLC 2010
The information of publication is updating

書目名稱Riemannian Geometry of Contact and Symplectic Manifolds影響因子(影響力)




書目名稱Riemannian Geometry of Contact and Symplectic Manifolds影響因子(影響力)學科排名




書目名稱Riemannian Geometry of Contact and Symplectic Manifolds網(wǎng)絡公開度




書目名稱Riemannian Geometry of Contact and Symplectic Manifolds網(wǎng)絡公開度學科排名




書目名稱Riemannian Geometry of Contact and Symplectic Manifolds被引頻次




書目名稱Riemannian Geometry of Contact and Symplectic Manifolds被引頻次學科排名




書目名稱Riemannian Geometry of Contact and Symplectic Manifolds年度引用




書目名稱Riemannian Geometry of Contact and Symplectic Manifolds年度引用學科排名




書目名稱Riemannian Geometry of Contact and Symplectic Manifolds讀者反饋




書目名稱Riemannian Geometry of Contact and Symplectic Manifolds讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 21:52:12 | 只看該作者
CA-UTIs should be treated with antibiotics. However, recognizing the symptoms of UTI is often difficult, since they might be atypical in catheterized patients, and require thorough inspection, evaluation, and exclusion of other sources of infection. The empirical treatment of the diagnosed CA-UTI i
板凳
發(fā)表于 2025-3-22 01:28:50 | 只看該作者
David E. Blairrs relevant for the three infections cystitis, pyelonephritis, and urosepsis, we organized the risk factors into six groups and proposed the . system for phenotyping. Today, it is time for an ESIU-ORENUC II classification that includes new findings and insights such as metagenomics and collateral ef
地板
發(fā)表于 2025-3-22 05:46:04 | 只看該作者
David E. Blairrs relevant for the three infections cystitis, pyelonephritis, and urosepsis, we organized the risk factors into six groups and proposed the . system for phenotyping. Today, it is time for an ESIU-ORENUC II classification that includes new findings and insights such as metagenomics and collateral ef
5#
發(fā)表于 2025-3-22 10:49:39 | 只看該作者
0743-1643 n:.."The book . . . can be used either as an introduction to the subject or as a reference for students and researchers . . . [it] gives a clear and complete account of the main ideas . . . and studies a vast a978-0-8176-4959-3Series ISSN 0743-1643 Series E-ISSN 2296-505X
6#
發(fā)表于 2025-3-22 15:44:52 | 只看該作者
Riemannian Geometry of Contact and Symplectic Manifolds
7#
發(fā)表于 2025-3-22 19:58:08 | 只看該作者
0743-1643 d holomorphic tangent bundle.Improvements and general correc.This second edition, divided into fourteen chapters, presents a comprehensive treatment of contact and symplectic manifolds from the Riemannian point of view. The monograph examines the basic ideas in detail and provides many illustrative
8#
發(fā)表于 2025-3-23 00:09:56 | 只看該作者
Book 2010Latest edition of view. The monograph examines the basic ideas in detail and provides many illustrative examples for the reader...Riemannian Geometry of Contact and Symplectic Manifolds, Second Edition. provides new material in most chapters, but a particular emphasis remains on contact manifolds. New principal t
9#
發(fā)表于 2025-3-23 03:48:38 | 只看該作者
10#
發(fā)表于 2025-3-23 08:42:26 | 只看該作者
Additional Topics in Complex Geometry,vized holomorphic tangent bundle and develop its complex almost contact metric structure. In Section 13.5 we first discuss special directions on complex contact manifolds analogous to our treatment in the real case in Chapter 11 and then discuss complex contact structures on the Lie group .(2, .) in detail.
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 08:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
荃湾区| 莲花县| 仙居县| 阿克苏市| 丹东市| 渭南市| 紫云| 乐昌市| 靖边县| 温宿县| 沁阳市| 吴堡县| 成武县| 鹤壁市| 洪雅县| 雅安市| 吴堡县| 高安市| 石河子市| 扎赉特旗| 平顺县| 玉屏| 灌阳县| 鸡泽县| 内丘县| 昆山市| 邯郸市| 万宁市| 健康| 会同县| 二手房| 河北省| 家居| 沧州市| 乐安县| 松阳县| 法库县| 通渭县| 仙居县| 武安市| 禄劝|