找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Riemannian Geometry of Contact and Symplectic Manifolds; David E. Blair Book 2010Latest edition Springer Science+Business Media LLC 2010 D

[復制鏈接]
樓主: 去是公開
11#
發(fā)表于 2025-3-23 10:14:23 | 只看該作者
12#
發(fā)表于 2025-3-23 14:17:11 | 只看該作者
13#
發(fā)表于 2025-3-23 19:13:02 | 只看該作者
Associated Metrics,ization. We also discuss the action of symplectic and contact transformations on associated metrics. Some of our discussion is broader, dealing with almost Hermitian and almost contact metric structures. The chapter closes with several examples.
14#
發(fā)表于 2025-3-24 01:48:22 | 只看該作者
Sasakian and Cosymplectic Manifolds,lso introduce another important structure tensor, ., which will be useful in the study of non-Sasakian contact metric manifolds. As an additional topic, cosymplectic manifolds will be discussed in some detail. We also give several examples and additional commentary.
15#
發(fā)表于 2025-3-24 05:18:37 | 只看該作者
Tangent Bundles and Tangent Sphere Bundles, a more general construction on vector bundles and in Section 4 specialize to the case of the normal bundle of a submanifold. The formalism for the tangent bundle and the tangent sphere bundle is of sufficient importance to warrant its own development, rather than specializing from the vector bundle
16#
發(fā)表于 2025-3-24 07:28:37 | 只看該作者
Curvature Functionals on Spaces of Associated Metrics,ct manifolds. Since these spaces are smaller than the space of Riemannian metrics of the same total volume, one expects for the classical curvature functionals weaker but still interesting critical point conditions. Other functionals that depend on the symplectic and contact structures are also cons
17#
發(fā)表于 2025-3-24 13:24:01 | 只看該作者
Additional Topics in Complex Geometry,95]. In Section 13.2 we discuss the geometry of the projectivized holomorphic tangent and cotangent bundles. The study of the projectivized holomorphic tangent bundle naturally raises the question of a complex geodesic flow, which we discuss in Section 13.3. In Section 13.4 we return to the projecti
18#
發(fā)表于 2025-3-24 17:23:26 | 只看該作者
Springer Science+Business Media LLC 2010
19#
發(fā)表于 2025-3-24 21:24:55 | 只看該作者
Riemannian Geometry of Contact and Symplectic Manifolds978-0-8176-4959-3Series ISSN 0743-1643 Series E-ISSN 2296-505X
20#
發(fā)表于 2025-3-25 02:51:06 | 只看該作者
Progress in Mathematicshttp://image.papertrans.cn/r/image/830318.jpg
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-31 15:11
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
克东县| 徐州市| 泰宁县| 合川市| 甘南县| 通渭县| 定西市| 天峨县| 新平| 海林市| 汝城县| 隆子县| 綦江县| 新营市| 含山县| 巴中市| 蒙城县| 比如县| 无锡市| 凤庆县| 卫辉市| 同德县| 特克斯县| 张家港市| 定南县| 同心县| 宾川县| 波密县| 芮城县| 延长县| 小金县| 苍南县| 临泉县| 北票市| 阳信县| 泗洪县| 民丰县| 黔东| 奈曼旗| 富宁县| 久治县|