找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Riemannian Geometry of Contact and Symplectic Manifolds; David E. Blair Book 2010Latest edition Springer Science+Business Media LLC 2010 D

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 10:14:23 | 只看該作者
12#
發(fā)表于 2025-3-23 14:17:11 | 只看該作者
13#
發(fā)表于 2025-3-23 19:13:02 | 只看該作者
Associated Metrics,ization. We also discuss the action of symplectic and contact transformations on associated metrics. Some of our discussion is broader, dealing with almost Hermitian and almost contact metric structures. The chapter closes with several examples.
14#
發(fā)表于 2025-3-24 01:48:22 | 只看該作者
Sasakian and Cosymplectic Manifolds,lso introduce another important structure tensor, ., which will be useful in the study of non-Sasakian contact metric manifolds. As an additional topic, cosymplectic manifolds will be discussed in some detail. We also give several examples and additional commentary.
15#
發(fā)表于 2025-3-24 05:18:37 | 只看該作者
Tangent Bundles and Tangent Sphere Bundles, a more general construction on vector bundles and in Section 4 specialize to the case of the normal bundle of a submanifold. The formalism for the tangent bundle and the tangent sphere bundle is of sufficient importance to warrant its own development, rather than specializing from the vector bundle
16#
發(fā)表于 2025-3-24 07:28:37 | 只看該作者
Curvature Functionals on Spaces of Associated Metrics,ct manifolds. Since these spaces are smaller than the space of Riemannian metrics of the same total volume, one expects for the classical curvature functionals weaker but still interesting critical point conditions. Other functionals that depend on the symplectic and contact structures are also cons
17#
發(fā)表于 2025-3-24 13:24:01 | 只看該作者
Additional Topics in Complex Geometry,95]. In Section 13.2 we discuss the geometry of the projectivized holomorphic tangent and cotangent bundles. The study of the projectivized holomorphic tangent bundle naturally raises the question of a complex geodesic flow, which we discuss in Section 13.3. In Section 13.4 we return to the projecti
18#
發(fā)表于 2025-3-24 17:23:26 | 只看該作者
Springer Science+Business Media LLC 2010
19#
發(fā)表于 2025-3-24 21:24:55 | 只看該作者
Riemannian Geometry of Contact and Symplectic Manifolds978-0-8176-4959-3Series ISSN 0743-1643 Series E-ISSN 2296-505X
20#
發(fā)表于 2025-3-25 02:51:06 | 只看該作者
Progress in Mathematicshttp://image.papertrans.cn/r/image/830318.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-31 08:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宝山区| 台湾省| 安龙县| 湛江市| 北安市| 澄城县| 岚皋县| 灵石县| 敦煌市| 文安县| 布尔津县| 阿拉善盟| 宁化县| 密云县| 巴中市| 泸水县| 开阳县| 沂南县| 河间市| 吴堡县| 寿阳县| 玉溪市| 双桥区| 营口市| 德昌县| 全椒县| 宁安市| 江安县| 大同市| 渝北区| 武威市| 信丰县| 长顺县| 莱芜市| 城口县| 乡宁县| 木里| 黑河市| 镇远县| 聂拉木县| 穆棱市|