找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Riemannian Computing in Computer Vision; Pavan K. Turaga,Anuj Srivastava Book 2016 The Editor(s) (if applicable) and The Author(s), under

[復制鏈接]
樓主: Clinton
21#
發(fā)表于 2025-3-25 07:20:52 | 只看該作者
22#
發(fā)表于 2025-3-25 09:48:32 | 只看該作者
23#
發(fā)表于 2025-3-25 14:37:03 | 只看該作者
Canonical Correlation Analysis on SPD(,) Manifoldsand has found a multitude of applications in computer vision, medical imaging, and machine learning. The classical formulation assumes that the data live in a pair of . which makes its use in certain important scientific domains problematic. For instance, the set of symmetric positive definite matri
24#
發(fā)表于 2025-3-25 17:05:40 | 只看該作者
25#
發(fā)表于 2025-3-25 22:33:51 | 只看該作者
Robust Estimation for Computer Vision Using Grassmann Manifolds studied for Euclidean spaces and their use has also been extended to Riemannian spaces. In this chapter, we present the necessary mathematical constructs for Grassmann manifolds, followed by two different algorithms that can perform robust estimation on them. In the first one, we describe a nonline
26#
發(fā)表于 2025-3-26 02:00:40 | 只看該作者
27#
發(fā)表于 2025-3-26 06:05:56 | 只看該作者
28#
發(fā)表于 2025-3-26 11:50:15 | 只看該作者
Covariance Weighted Procrustes Analysisetely general covariance matrix, extending previous approaches based on factored covariance structures. Procrustes matching is used to compute the Riemannian metric in shape space and is used more widely for carrying out inference such as estimation of mean shape and covariance structure. Rather tha
29#
發(fā)表于 2025-3-26 16:41:39 | 只看該作者
Elastic Shape Analysis of Functions, Curves and Trajectoriesnd trajectories can also have important geometric features, we use shape as an all-encompassing term for the descriptors of curves, scalar functions and trajectories. Our framework relies on functional representation and analysis of curves and scalar functions, by square-root velocity fields (SRVF)
30#
發(fā)表于 2025-3-26 18:57:33 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 03:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
峨边| 蓬莱市| 白城市| 师宗县| 罗平县| 南澳县| 景洪市| 平南县| 金阳县| 探索| 邯郸县| 石屏县| 双峰县| 政和县| 合水县| 广丰县| 镇巴县| 台前县| 长沙市| 文山县| 韶关市| 化州市| 禄劝| 准格尔旗| 大同县| 浏阳市| 错那县| 安溪县| 太仆寺旗| 双桥区| 盈江县| 安西县| 柳河县| 黎平县| 东港市| 洱源县| 田东县| 盐源县| 三明市| 琼结县| 枣庄市|