找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Riemannian Computing in Computer Vision; Pavan K. Turaga,Anuj Srivastava Book 2016 The Editor(s) (if applicable) and The Author(s), under

[復(fù)制鏈接]
樓主: Clinton
31#
發(fā)表于 2025-3-26 22:11:14 | 只看該作者
Elastic Shape Analysis of Surfaces and Imageson, deformation, averaging, statistical modeling, and random sampling of surface shapes. A crucial property of both of these frameworks is that they are invariant to reparameterizations of surfaces. Thus, they result in natural shape comparisons and statistics. The first method we describe is based
32#
發(fā)表于 2025-3-27 02:15:41 | 只看該作者
Designing a Boosted Classifier on Riemannian Manifoldsescriptors lying on a Riemannian manifold. This chapter describes a boosted classification approach that incorporates the a priori knowledge of the geometry of the Riemannian space. The presented classifier incorporated into a rejection cascade and applied to single image human detection task. Resul
33#
發(fā)表于 2025-3-27 05:39:37 | 只看該作者
34#
發(fā)表于 2025-3-27 12:00:37 | 只看該作者
Domain Adaptation Using the Grassmann Manifoldact that given data may have variations that can be difficult to incorporate into well-known, classical methods. One of these sources of variation is that of differing data sources, often called domain adaptation. Many domain adaptation techniques use the notion of a shared representation to attempt
35#
發(fā)表于 2025-3-27 17:37:27 | 只看該作者
36#
發(fā)表于 2025-3-27 20:31:50 | 只看該作者
37#
發(fā)表于 2025-3-28 00:41:35 | 只看該作者
Book 2016s. This edited volume?includes chapter contributions from leading figures in the field of computer vision who are applying Riemannian geometric approaches in problems such as face recognition, activity recognition, object detection, biomedical image analysis, and structure-from-motion. Some of the m
38#
發(fā)表于 2025-3-28 03:46:04 | 只看該作者
39#
發(fā)表于 2025-3-28 07:05:54 | 只看該作者
40#
發(fā)表于 2025-3-28 11:48:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 07:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
娄烦县| 余江县| 双江| 涿州市| 莱芜市| 邹平县| 调兵山市| 盈江县| 兴化市| 巩义市| 宣威市| 兰溪市| 平武县| 木兰县| 中西区| 亳州市| 临高县| 仁布县| 大城县| 廉江市| 恩平市| 黎川县| 济阳县| 榆树市| 观塘区| 剑河县| 临沧市| 民权县| 镇江市| 藁城市| 金沙县| 保康县| 仙居县| 洛浦县| 石首市| 伽师县| 无为县| 南部县| 广灵县| 大丰市| 广宁县|