找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Riemannian Computing in Computer Vision; Pavan K. Turaga,Anuj Srivastava Book 2016 The Editor(s) (if applicable) and The Author(s), under

[復(fù)制鏈接]
樓主: Clinton
21#
發(fā)表于 2025-3-25 07:20:52 | 只看該作者
22#
發(fā)表于 2025-3-25 09:48:32 | 只看該作者
23#
發(fā)表于 2025-3-25 14:37:03 | 只看該作者
Canonical Correlation Analysis on SPD(,) Manifoldsand has found a multitude of applications in computer vision, medical imaging, and machine learning. The classical formulation assumes that the data live in a pair of . which makes its use in certain important scientific domains problematic. For instance, the set of symmetric positive definite matri
24#
發(fā)表于 2025-3-25 17:05:40 | 只看該作者
25#
發(fā)表于 2025-3-25 22:33:51 | 只看該作者
Robust Estimation for Computer Vision Using Grassmann Manifolds studied for Euclidean spaces and their use has also been extended to Riemannian spaces. In this chapter, we present the necessary mathematical constructs for Grassmann manifolds, followed by two different algorithms that can perform robust estimation on them. In the first one, we describe a nonline
26#
發(fā)表于 2025-3-26 02:00:40 | 只看該作者
27#
發(fā)表于 2025-3-26 06:05:56 | 只看該作者
28#
發(fā)表于 2025-3-26 11:50:15 | 只看該作者
Covariance Weighted Procrustes Analysisetely general covariance matrix, extending previous approaches based on factored covariance structures. Procrustes matching is used to compute the Riemannian metric in shape space and is used more widely for carrying out inference such as estimation of mean shape and covariance structure. Rather tha
29#
發(fā)表于 2025-3-26 16:41:39 | 只看該作者
Elastic Shape Analysis of Functions, Curves and Trajectoriesnd trajectories can also have important geometric features, we use shape as an all-encompassing term for the descriptors of curves, scalar functions and trajectories. Our framework relies on functional representation and analysis of curves and scalar functions, by square-root velocity fields (SRVF)
30#
發(fā)表于 2025-3-26 18:57:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 07:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通化市| 湘乡市| 津南区| 公安县| 阿坝县| 易门县| 弋阳县| 景谷| 攀枝花市| 怀仁县| 通化县| 余庆县| 廉江市| 柘城县| 涿鹿县| 吴堡县| 东港市| 苍梧县| 石景山区| 罗田县| 灵寿县| 宜阳县| 安吉县| 怀来县| 甘德县| 尼勒克县| 湾仔区| 涟源市| 同德县| 博乐市| 广饶县| 耿马| 鹤山市| 宁明县| 长垣县| 会理县| 莲花县| 思茅市| 西盟| 贵定县| 高碑店市|