找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Riemannian Computing in Computer Vision; Pavan K. Turaga,Anuj Srivastava Book 2016 The Editor(s) (if applicable) and The Author(s), under

[復(fù)制鏈接]
樓主: Clinton
21#
發(fā)表于 2025-3-25 07:20:52 | 只看該作者
22#
發(fā)表于 2025-3-25 09:48:32 | 只看該作者
23#
發(fā)表于 2025-3-25 14:37:03 | 只看該作者
Canonical Correlation Analysis on SPD(,) Manifoldsand has found a multitude of applications in computer vision, medical imaging, and machine learning. The classical formulation assumes that the data live in a pair of . which makes its use in certain important scientific domains problematic. For instance, the set of symmetric positive definite matri
24#
發(fā)表于 2025-3-25 17:05:40 | 只看該作者
25#
發(fā)表于 2025-3-25 22:33:51 | 只看該作者
Robust Estimation for Computer Vision Using Grassmann Manifolds studied for Euclidean spaces and their use has also been extended to Riemannian spaces. In this chapter, we present the necessary mathematical constructs for Grassmann manifolds, followed by two different algorithms that can perform robust estimation on them. In the first one, we describe a nonline
26#
發(fā)表于 2025-3-26 02:00:40 | 只看該作者
27#
發(fā)表于 2025-3-26 06:05:56 | 只看該作者
28#
發(fā)表于 2025-3-26 11:50:15 | 只看該作者
Covariance Weighted Procrustes Analysisetely general covariance matrix, extending previous approaches based on factored covariance structures. Procrustes matching is used to compute the Riemannian metric in shape space and is used more widely for carrying out inference such as estimation of mean shape and covariance structure. Rather tha
29#
發(fā)表于 2025-3-26 16:41:39 | 只看該作者
Elastic Shape Analysis of Functions, Curves and Trajectoriesnd trajectories can also have important geometric features, we use shape as an all-encompassing term for the descriptors of curves, scalar functions and trajectories. Our framework relies on functional representation and analysis of curves and scalar functions, by square-root velocity fields (SRVF)
30#
發(fā)表于 2025-3-26 18:57:33 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 07:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新兴县| 沁源县| 芒康县| 华坪县| 积石山| 安乡县| 嘉义县| 淅川县| 文安县| 乾安县| 海宁市| 莱西市| 苍山县| 新沂市| 方城县| 修水县| 深圳市| 定陶县| 图们市| 高邮市| 隆尧县| 南部县| 綦江县| 韶山市| 承德市| 松潘县| 舟山市| 共和县| 南丰县| 灵武市| 新乡市| 玛纳斯县| 大渡口区| 东宁县| 永川市| 施甸县| 文安县| 乌兰浩特市| 汕尾市| 饶平县| 措勤县|