找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Riemannian Computing in Computer Vision; Pavan K. Turaga,Anuj Srivastava Book 2016 The Editor(s) (if applicable) and The Author(s), under

[復制鏈接]
樓主: Clinton
31#
發(fā)表于 2025-3-26 22:11:14 | 只看該作者
Elastic Shape Analysis of Surfaces and Imageson, deformation, averaging, statistical modeling, and random sampling of surface shapes. A crucial property of both of these frameworks is that they are invariant to reparameterizations of surfaces. Thus, they result in natural shape comparisons and statistics. The first method we describe is based
32#
發(fā)表于 2025-3-27 02:15:41 | 只看該作者
Designing a Boosted Classifier on Riemannian Manifoldsescriptors lying on a Riemannian manifold. This chapter describes a boosted classification approach that incorporates the a priori knowledge of the geometry of the Riemannian space. The presented classifier incorporated into a rejection cascade and applied to single image human detection task. Resul
33#
發(fā)表于 2025-3-27 05:39:37 | 只看該作者
34#
發(fā)表于 2025-3-27 12:00:37 | 只看該作者
Domain Adaptation Using the Grassmann Manifoldact that given data may have variations that can be difficult to incorporate into well-known, classical methods. One of these sources of variation is that of differing data sources, often called domain adaptation. Many domain adaptation techniques use the notion of a shared representation to attempt
35#
發(fā)表于 2025-3-27 17:37:27 | 只看該作者
36#
發(fā)表于 2025-3-27 20:31:50 | 只看該作者
37#
發(fā)表于 2025-3-28 00:41:35 | 只看該作者
Book 2016s. This edited volume?includes chapter contributions from leading figures in the field of computer vision who are applying Riemannian geometric approaches in problems such as face recognition, activity recognition, object detection, biomedical image analysis, and structure-from-motion. Some of the m
38#
發(fā)表于 2025-3-28 03:46:04 | 只看該作者
39#
發(fā)表于 2025-3-28 07:05:54 | 只看該作者
40#
發(fā)表于 2025-3-28 11:48:56 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-24 03:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
文昌市| 石泉县| 揭东县| 东至县| 镇康县| 长宁区| 崇州市| 克什克腾旗| 大姚县| 康马县| 永安市| 丰顺县| 南乐县| 聂拉木县| 巴林右旗| 改则县| 小金县| 万盛区| 大关县| 宜川县| 嘉黎县| 讷河市| 五家渠市| 榆林市| 邵阳市| 长子县| 双峰县| 曲周县| 屏南县| 长沙县| 南华县| 嘉义县| 盐源县| 平泉县| 阜阳市| 阿坝县| 鄢陵县| 洪泽县| 余江县| 五莲县| 福清市|