找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Rewriting Techniques and Applications; 4th International Co Ronald V. Book Conference proceedings 1991 Springer-Verlag Berlin Heidelberg 19

[復(fù)制鏈接]
樓主: FAULT
41#
發(fā)表于 2025-3-28 18:40:19 | 只看該作者
42#
發(fā)表于 2025-3-28 20:57:34 | 只看該作者
43#
發(fā)表于 2025-3-29 02:05:28 | 只看該作者
44#
發(fā)表于 2025-3-29 03:44:03 | 只看該作者
45#
發(fā)表于 2025-3-29 11:02:49 | 只看該作者
46#
發(fā)表于 2025-3-29 12:04:39 | 只看該作者
Redex capturing in term graph rewriting (concise version),e-efficient method for implementing term rewrite systems. Certain structure sharing schemes can lead to a situation in which a term graph component is rewritten to another component that contains the original. This phenomenon, called . introduces cycles into the term graph which is being rewritten—e
47#
發(fā)表于 2025-3-29 16:10:31 | 只看該作者
Rewriting, and equational unification: the higher-order cases, and equational unification and their properties. This provides a basis for generalizing the first- and restricted higher-order results for these concepts. As examples, we generalize Plotkin‘s criteria for building-in equational theories, and show that pure third-order equational matching is undecid
48#
發(fā)表于 2025-3-29 21:51:56 | 只看該作者
Adding algebraic rewriting to the untyped lambda calculus (extended abstract),“stable”, we prove that the resulting calculus is confluent if . is confluent, and terminating if . is terminating. The termination result has the corresponding theorems for several typed calculi as corollaries. The proof of the confluence result yields a general method for proving confluence of typ
49#
發(fā)表于 2025-3-30 01:23:01 | 只看該作者
Incremental termination proofs and the length of derivations,incremental termination proof for a term rewriting system . can be used to derive upper bounds on the length of derivations in .. A number of examples show that our results can be applied to yield (sharp) low-degree polynomial complexity bounds.
50#
發(fā)表于 2025-3-30 07:11:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
舒城县| 尉犁县| 东安县| 蓬莱市| 新平| 夹江县| 房山区| 洮南市| 洪雅县| 开原市| 麦盖提县| 五峰| 勃利县| 秭归县| 菏泽市| 南华县| 通城县| 新龙县| 汤原县| 衡阳县| 平果县| 敦煌市| 巢湖市| 定兴县| 唐河县| 阜城县| 桦甸市| 青河县| 古蔺县| 榕江县| 宜兴市| 崇阳县| 青海省| 湟中县| 长春市| 洞头县| 应用必备| 蒲城县| 辰溪县| 竹北市| 雅安市|