找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rewriting Techniques and Applications; 4th International Co Ronald V. Book Conference proceedings 1991 Springer-Verlag Berlin Heidelberg 19

[復制鏈接]
樓主: FAULT
51#
發(fā)表于 2025-3-30 09:19:43 | 只看該作者
Detecting redundant narrowing derivations by the LSE-SL reducibility test,er, narrowing is still much too inefficient. In this paper we show how reducibility tests can be used to detect redundant narrowing derivations. We introduce a new narrowing strategy, LSE-SL left-to-right basic normal narrowing, prove its completeness for arbitrary canonical term rewriting systems,
52#
發(fā)表于 2025-3-30 13:48:45 | 只看該作者
53#
發(fā)表于 2025-3-30 19:15:31 | 只看該作者
AC unification through order-sorted AC1 unification,ne of the solutions proposed until now is very satisfying because of the huge amount of minimal unifiers of some equations. Unlike many authors, we did not try to speed up computations by optimizing some parts of the algorithm, but we tried to design an extension of the algebra in which unification
54#
發(fā)表于 2025-3-30 20:59:53 | 只看該作者
55#
發(fā)表于 2025-3-31 02:50:08 | 只看該作者
56#
發(fā)表于 2025-3-31 08:23:11 | 只看該作者
57#
發(fā)表于 2025-3-31 12:00:11 | 只看該作者
58#
發(fā)表于 2025-3-31 15:28:43 | 只看該作者
Proofs in parameterized specifications,ry of the parameterized specification if and only if it holds in the so-called generic algebra. Provided persistency, for any specification morphism, the translated equality holds in the initial algebra of the instantiated specification. Using a notion of generic ground reducibility, a persistency p
59#
發(fā)表于 2025-3-31 19:05:03 | 只看該作者
Completeness of combinations of constructor systems,plete term rewriting systems does not need to be complete. In other words, completeness is not a modular property of term rewriting systems. Toyama, Klop and Barendregt showed that completeness is a modular property of left-linear TRS‘s. In this paper we show that it is sufficient to impose the cons
60#
發(fā)表于 2025-3-31 23:05:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 22:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
沐川县| 贵德县| 增城市| 临安市| 千阳县| 法库县| 通州市| 桐庐县| 左贡县| 阿巴嘎旗| 和顺县| 丹巴县| 吴桥县| 荣成市| 南华县| 朝阳县| 哈尔滨市| 新野县| 常宁市| 桑植县| 海阳市| 渝中区| 称多县| 横山县| 浪卡子县| 峨山| 扎鲁特旗| 池州市| 乐陵市| 克什克腾旗| 娱乐| 安化县| 无极县| 赞皇县| 长垣县| 庄河市| 揭西县| 汤原县| 华蓥市| 江西省| 孝义市|