找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Rewriting Techniques and Applications; 4th International Co Ronald V. Book Conference proceedings 1991 Springer-Verlag Berlin Heidelberg 19

[復(fù)制鏈接]
樓主: FAULT
51#
發(fā)表于 2025-3-30 09:19:43 | 只看該作者
Detecting redundant narrowing derivations by the LSE-SL reducibility test,er, narrowing is still much too inefficient. In this paper we show how reducibility tests can be used to detect redundant narrowing derivations. We introduce a new narrowing strategy, LSE-SL left-to-right basic normal narrowing, prove its completeness for arbitrary canonical term rewriting systems,
52#
發(fā)表于 2025-3-30 13:48:45 | 只看該作者
53#
發(fā)表于 2025-3-30 19:15:31 | 只看該作者
AC unification through order-sorted AC1 unification,ne of the solutions proposed until now is very satisfying because of the huge amount of minimal unifiers of some equations. Unlike many authors, we did not try to speed up computations by optimizing some parts of the algorithm, but we tried to design an extension of the algebra in which unification
54#
發(fā)表于 2025-3-30 20:59:53 | 只看該作者
55#
發(fā)表于 2025-3-31 02:50:08 | 只看該作者
56#
發(fā)表于 2025-3-31 08:23:11 | 只看該作者
57#
發(fā)表于 2025-3-31 12:00:11 | 只看該作者
58#
發(fā)表于 2025-3-31 15:28:43 | 只看該作者
Proofs in parameterized specifications,ry of the parameterized specification if and only if it holds in the so-called generic algebra. Provided persistency, for any specification morphism, the translated equality holds in the initial algebra of the instantiated specification. Using a notion of generic ground reducibility, a persistency p
59#
發(fā)表于 2025-3-31 19:05:03 | 只看該作者
Completeness of combinations of constructor systems,plete term rewriting systems does not need to be complete. In other words, completeness is not a modular property of term rewriting systems. Toyama, Klop and Barendregt showed that completeness is a modular property of left-linear TRS‘s. In this paper we show that it is sufficient to impose the cons
60#
發(fā)表于 2025-3-31 23:05:00 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 08:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
滨海县| 平乐县| 慈溪市| 凌海市| 乌鲁木齐县| 肥城市| 崇仁县| 麟游县| 海兴县| 河间市| 沙田区| 周至县| 南京市| 太原市| 湖南省| 肇源县| 肇东市| 山丹县| 九龙县| 长宁区| 临桂县| 久治县| 珠海市| 五寨县| 天等县| 平顺县| 璧山县| 故城县| 巢湖市| 班玛县| 顺义区| 长兴县| 宜黄县| 新建县| 武冈市| 定陶县| 布拖县| 犍为县| 青海省| 布拖县| 禹州市|