找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Resolution of Curve and Surface Singularities in Characteristic Zero; K. Kiyek,J. L. Vicente Book 2004 Springer Science+Business Media New

[復(fù)制鏈接]
樓主: Buren
21#
發(fā)表于 2025-3-25 05:09:00 | 只看該作者
Valuation Theory,. is a ring having large Jacobson radical. We show that a Manis valuation of . gives rise to a Manis valuation ring of . and that, conversely, every Manis valuation ring of . determines a Manis valuation of .. Also, for discrete Manis valuations we prove an approximation theorem.
22#
發(fā)表于 2025-3-25 10:18:42 | 只看該作者
23#
發(fā)表于 2025-3-25 15:22:47 | 只看該作者
24#
發(fā)表于 2025-3-25 16:47:47 | 只看該作者
25#
發(fā)表于 2025-3-25 20:15:56 | 只看該作者
The Singularity , = ,lgebraically closed field . of characteristic zero; here 0 < . < . are integers and gcd(., .) = 1. These singularities arise in a natural way: In section 1 we show in (1.6) that if L is a finite extension of . = .((., .)), . is the integral closure of . = . ?., .? in ., and the only prime ideals of
26#
發(fā)表于 2025-3-26 02:35:42 | 只看該作者
Resolution of Singularities, regular surface .,and we show: by a finite sequence of blowing up points we get a regular surface . such that the total transform of . in . is a divisor with normal crossings [embedded resolution of curves in a regular surface].
27#
發(fā)表于 2025-3-26 05:19:00 | 只看該作者
Book 2004rks on plane curves [cf. [148], [149]]. And probably the origin of the problem was to have a formula to compute the genus of a plane curve. The genus is the most useful birational invariant of a curve in classical projective geometry. It was long known that, for a plane curve of degree n having l m
28#
發(fā)表于 2025-3-26 09:14:39 | 只看該作者
29#
發(fā)表于 2025-3-26 15:01:22 | 只看該作者
30#
發(fā)表于 2025-3-26 16:53:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 01:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邹城市| 东明县| 鸡泽县| 宁陕县| 浦江县| 福州市| 于都县| 四川省| 中西区| 扶绥县| 英吉沙县| 资溪县| 广河县| 吉林市| 莱州市| 博客| 富锦市| 信阳市| 偃师市| 永城市| 方城县| 泰兴市| 定陶县| 象山县| 高尔夫| 霍林郭勒市| 柳江县| 苍溪县| 永新县| 三都| 孝昌县| 左权县| 江城| 乐陵市| 文安县| 武胜县| 黔西| 新邵县| 耿马| 安远县| 泽普县|