找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Resolution of Curve and Surface Singularities in Characteristic Zero; K. Kiyek,J. L. Vicente Book 2004 Springer Science+Business Media New

[復制鏈接]
查看: 13132|回復: 41
樓主
發(fā)表于 2025-3-21 16:53:49 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Resolution of Curve and Surface Singularities in Characteristic Zero
編輯K. Kiyek,J. L. Vicente
視頻videohttp://file.papertrans.cn/829/828491/828491.mp4
叢書名稱Algebra and Applications
圖書封面Titlebook: Resolution of Curve and Surface Singularities in Characteristic Zero;  K. Kiyek,J. L. Vicente Book 2004 Springer Science+Business Media New
描述The Curves The Point of View of Max Noether Probably the oldest references to the problem of resolution of singularities are found in Max Noether‘s works on plane curves [cf. [148], [149]]. And probably the origin of the problem was to have a formula to compute the genus of a plane curve. The genus is the most useful birational invariant of a curve in classical projective geometry. It was long known that, for a plane curve of degree n having l m ordinary singular points with respective multiplicities ri, i E {1, . . . , m}, the genus p of the curve is given by the formula = (n - l)(n - 2) _ ~ "r. (r. _ 1) P 2 2 L. . ,. ?? . Of course, the problem now arises: how to compute the genus of a plane curve having some non-ordinary singularities. This leads to the natural question: can we birationally transform any (singular) plane curve into another one having only ordinary singularities? The answer is positive. Let us give a flavor (without proofs) 2 on how Noether did it ? To solve the problem, it is enough to consider a special kind of Cremona trans- formations, namely quadratic transformations of the projective plane. Let ~ be a linear system of conics with three non-collinear base po
出版日期Book 2004
關鍵詞Abelian group; Blowing up; Dimension; Divisor; Grad; algebraic geometry; brandonwiskunde; commutative algeb
版次1
doihttps://doi.org/10.1007/978-1-4020-2029-2
isbn_softcover978-90-481-6573-5
isbn_ebook978-1-4020-2029-2Series ISSN 1572-5553 Series E-ISSN 2192-2950
issn_series 1572-5553
copyrightSpringer Science+Business Media New York 2004
The information of publication is updating

書目名稱Resolution of Curve and Surface Singularities in Characteristic Zero影響因子(影響力)




書目名稱Resolution of Curve and Surface Singularities in Characteristic Zero影響因子(影響力)學科排名




書目名稱Resolution of Curve and Surface Singularities in Characteristic Zero網(wǎng)絡公開度




書目名稱Resolution of Curve and Surface Singularities in Characteristic Zero網(wǎng)絡公開度學科排名




書目名稱Resolution of Curve and Surface Singularities in Characteristic Zero被引頻次




書目名稱Resolution of Curve and Surface Singularities in Characteristic Zero被引頻次學科排名




書目名稱Resolution of Curve and Surface Singularities in Characteristic Zero年度引用




書目名稱Resolution of Curve and Surface Singularities in Characteristic Zero年度引用學科排名




書目名稱Resolution of Curve and Surface Singularities in Characteristic Zero讀者反饋




書目名稱Resolution of Curve and Surface Singularities in Characteristic Zero讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:53:08 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:33:30 | 只看該作者
地板
發(fā)表于 2025-3-22 06:08:19 | 只看該作者
5#
發(fā)表于 2025-3-22 10:31:28 | 只看該作者
Quasiordinary Singularities,In this chapter we work over an algebraically closed field . of characteristic zero. Let . be the ring of formal resp. convergent power series over . in n indeterminates X.,..., ., let . be the field of quotients of ., let .1 be a natural integer, and let . be the splitting field over . of the polynomial .. .) ... (. ?.. ∈ .[.].
6#
發(fā)表于 2025-3-22 14:49:12 | 只看該作者
7#
發(fā)表于 2025-3-22 17:59:09 | 只看該作者
8#
發(fā)表于 2025-3-22 23:16:12 | 只看該作者
Resolution of Curve and Surface Singularities in Characteristic Zero978-1-4020-2029-2Series ISSN 1572-5553 Series E-ISSN 2192-2950
9#
發(fā)表于 2025-3-23 03:30:33 | 只看該作者
10#
發(fā)表于 2025-3-23 05:57:09 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 06:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
绥芬河市| 乐都县| 齐齐哈尔市| 仁怀市| 洞口县| 徐州市| 玛曲县| 招远市| 定襄县| 察哈| 四会市| 许昌县| 安图县| 三原县| 汝州市| 曲麻莱县| 平南县| 连江县| 禄劝| 清流县| 长乐市| 日喀则市| 九江市| 榆林市| 肇源县| 菏泽市| 铜梁县| 玛纳斯县| 四会市| 光山县| 永兴县| 关岭| 彩票| 酒泉市| 灵武市| 得荣县| 德江县| 蒲城县| 封开县| 诸城市| 建德市|