找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Resolution of Curve and Surface Singularities in Characteristic Zero; K. Kiyek,J. L. Vicente Book 2004 Springer Science+Business Media New

[復(fù)制鏈接]
查看: 13126|回復(fù): 41
樓主
發(fā)表于 2025-3-21 16:53:49 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Resolution of Curve and Surface Singularities in Characteristic Zero
編輯K. Kiyek,J. L. Vicente
視頻videohttp://file.papertrans.cn/829/828491/828491.mp4
叢書名稱Algebra and Applications
圖書封面Titlebook: Resolution of Curve and Surface Singularities in Characteristic Zero;  K. Kiyek,J. L. Vicente Book 2004 Springer Science+Business Media New
描述The Curves The Point of View of Max Noether Probably the oldest references to the problem of resolution of singularities are found in Max Noether‘s works on plane curves [cf. [148], [149]]. And probably the origin of the problem was to have a formula to compute the genus of a plane curve. The genus is the most useful birational invariant of a curve in classical projective geometry. It was long known that, for a plane curve of degree n having l m ordinary singular points with respective multiplicities ri, i E {1, . . . , m}, the genus p of the curve is given by the formula = (n - l)(n - 2) _ ~ "r. (r. _ 1) P 2 2 L. . ,. ?? . Of course, the problem now arises: how to compute the genus of a plane curve having some non-ordinary singularities. This leads to the natural question: can we birationally transform any (singular) plane curve into another one having only ordinary singularities? The answer is positive. Let us give a flavor (without proofs) 2 on how Noether did it ? To solve the problem, it is enough to consider a special kind of Cremona trans- formations, namely quadratic transformations of the projective plane. Let ~ be a linear system of conics with three non-collinear base po
出版日期Book 2004
關(guān)鍵詞Abelian group; Blowing up; Dimension; Divisor; Grad; algebraic geometry; brandonwiskunde; commutative algeb
版次1
doihttps://doi.org/10.1007/978-1-4020-2029-2
isbn_softcover978-90-481-6573-5
isbn_ebook978-1-4020-2029-2Series ISSN 1572-5553 Series E-ISSN 2192-2950
issn_series 1572-5553
copyrightSpringer Science+Business Media New York 2004
The information of publication is updating

書目名稱Resolution of Curve and Surface Singularities in Characteristic Zero影響因子(影響力)




書目名稱Resolution of Curve and Surface Singularities in Characteristic Zero影響因子(影響力)學(xué)科排名




書目名稱Resolution of Curve and Surface Singularities in Characteristic Zero網(wǎng)絡(luò)公開度




書目名稱Resolution of Curve and Surface Singularities in Characteristic Zero網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Resolution of Curve and Surface Singularities in Characteristic Zero被引頻次




書目名稱Resolution of Curve and Surface Singularities in Characteristic Zero被引頻次學(xué)科排名




書目名稱Resolution of Curve and Surface Singularities in Characteristic Zero年度引用




書目名稱Resolution of Curve and Surface Singularities in Characteristic Zero年度引用學(xué)科排名




書目名稱Resolution of Curve and Surface Singularities in Characteristic Zero讀者反饋




書目名稱Resolution of Curve and Surface Singularities in Characteristic Zero讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:53:08 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:33:30 | 只看該作者
地板
發(fā)表于 2025-3-22 06:08:19 | 只看該作者
5#
發(fā)表于 2025-3-22 10:31:28 | 只看該作者
Quasiordinary Singularities,In this chapter we work over an algebraically closed field . of characteristic zero. Let . be the ring of formal resp. convergent power series over . in n indeterminates X.,..., ., let . be the field of quotients of ., let .1 be a natural integer, and let . be the splitting field over . of the polynomial .. .) ... (. ?.. ∈ .[.].
6#
發(fā)表于 2025-3-22 14:49:12 | 只看該作者
7#
發(fā)表于 2025-3-22 17:59:09 | 只看該作者
8#
發(fā)表于 2025-3-22 23:16:12 | 只看該作者
Resolution of Curve and Surface Singularities in Characteristic Zero978-1-4020-2029-2Series ISSN 1572-5553 Series E-ISSN 2192-2950
9#
發(fā)表于 2025-3-23 03:30:33 | 只看該作者
10#
發(fā)表于 2025-3-23 05:57:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 01:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黄梅县| 富平县| 济南市| 南安市| 姚安县| 漯河市| 延吉市| 遂昌县| 常山县| 定边县| 临猗县| 乌拉特中旗| 彝良县| 土默特左旗| 同江市| 彭泽县| 滁州市| 宿松县| 阜康市| 密云县| 田林县| 加查县| 绥阳县| 大足县| 湖北省| 永修县| 德格县| 佛山市| 赣榆县| 深泽县| 沙坪坝区| 武鸣县| 福清市| 巴塘县| 高平市| 弋阳县| 嘉鱼县| 博白县| 鲁甸县| 基隆市| 乾安县|