找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Regularity of Optimal Transport Maps and Applications; Guido Philippis Book 2013 The Editor(s) (if applicable) and The Author(s), under ex

[復(fù)制鏈接]
查看: 29984|回復(fù): 38
樓主
發(fā)表于 2025-3-21 18:57:58 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Regularity of Optimal Transport Maps and Applications
編輯Guido Philippis
視頻videohttp://file.papertrans.cn/826/825565/825565.mp4
概述Essentially self-contained account of the known regularity theory of optimal maps in the case of quadratic cost.Presents proofs of some recent results like Sobolev regularity and Sobolev stability for
叢書名稱Publications of the Scuola Normale Superiore
圖書封面Titlebook: Regularity of Optimal Transport Maps and Applications;  Guido Philippis Book 2013 The Editor(s) (if applicable) and The Author(s), under ex
描述In this thesis, we study the regularity of optimal transport maps and its applications to the semi-geostrophic system. The first two chapters survey the known theory, in particular there is a self-contained proof of Brenier’ theorem on existence of optimal transport maps and of Caffarelli’s Theorem on Holder continuity of optimal maps. In the third and fourth chapter we start investigating Sobolev regularity of optimal transport maps, while in Chapter 5 we show how the above mentioned results allows to prove the existence of Eulerian solution to the semi-geostrophic equation. In Chapter 6 we prove partial regularity of optimal maps with respect to a generic cost functions (it is well known that in this case global regularity can not be expected). More precisely we show that if the target and source measure have smooth densities the optimal map is always smooth outside a closed set of measure zero.
出版日期Book 2013
關(guān)鍵詞Monge-Ampère equation; Sobolev regularity, Sobolev stability for optimal maps; general cost function; o
版次1
doihttps://doi.org/10.1007/978-88-7642-458-8
isbn_softcover978-88-7642-456-4
isbn_ebook978-88-7642-458-8Series ISSN 2239-1460 Series E-ISSN 2532-1668
issn_series 2239-1460
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Regularity of Optimal Transport Maps and Applications影響因子(影響力)




書目名稱Regularity of Optimal Transport Maps and Applications影響因子(影響力)學(xué)科排名




書目名稱Regularity of Optimal Transport Maps and Applications網(wǎng)絡(luò)公開度




書目名稱Regularity of Optimal Transport Maps and Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Regularity of Optimal Transport Maps and Applications被引頻次




書目名稱Regularity of Optimal Transport Maps and Applications被引頻次學(xué)科排名




書目名稱Regularity of Optimal Transport Maps and Applications年度引用




書目名稱Regularity of Optimal Transport Maps and Applications年度引用學(xué)科排名




書目名稱Regularity of Optimal Transport Maps and Applications讀者反饋




書目名稱Regularity of Optimal Transport Maps and Applications讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:03:08 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:13:22 | 只看該作者
地板
發(fā)表于 2025-3-22 06:50:42 | 只看該作者
Regularity of Optimal Transport Maps and Applications978-88-7642-458-8Series ISSN 2239-1460 Series E-ISSN 2532-1668
5#
發(fā)表于 2025-3-22 10:38:52 | 只看該作者
An overview on optimal transportation, ? (Y) and a .: . × . → ? we look for a map . such that .. = .. and that minimize . In general, there could be no solution to the above problem both because the class of admissible maps is empty (for instance in the case in which μ is a Dirac mass and . is not) or because the infimum is not attained (see [95, Example 4.9]).
6#
發(fā)表于 2025-3-22 16:33:16 | 只看該作者
,The Monge-Ampère equation,a proof of Caffarelli .. regularity theorem [18, 20]. Many of the tools developed in this Chapter will play a crucial role in the proof of the Sobolev regularity in Chapter 3. In the last Section we show, without proofs, how to build smooth solutions to the Monge-Ampère equation throughout the method of continuity.
7#
發(fā)表于 2025-3-22 20:41:10 | 只看該作者
,Sobolev regularity of solutions to the Monge Ampère equation,In this Chapter we prove the .. regularity of solutions of (2.1). This has been first shown in [40] in collaboration with Alessio Figalli, where actually the following higher integrability result was proved
8#
發(fā)表于 2025-3-22 23:50:37 | 只看該作者
9#
發(fā)表于 2025-3-23 05:14:37 | 只看該作者
Partial regularity of optimal transport maps,The goal of this chapter (based on a joint work with Alessio Figalli [43]) is to prove partial regularity of optimal transport maps under mild assumptions on the cost function c and on the densities f and g, Theorems 6.1 and 6.2 below.
10#
發(fā)表于 2025-3-23 06:24:43 | 只看該作者
Guido PhilippisEssentially self-contained account of the known regularity theory of optimal maps in the case of quadratic cost.Presents proofs of some recent results like Sobolev regularity and Sobolev stability for
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 07:36
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
革吉县| 蒙自县| 蕲春县| 盐山县| 三门峡市| 甘泉县| 龙江县| 洛川县| 鄂托克前旗| 兴文县| 尉氏县| 康乐县| 武威市| 甘南县| 怀化市| 通江县| 鹿泉市| 陕西省| 昌都县| 武邑县| 收藏| 南丹县| 连山| 金溪县| 盐津县| 婺源县| 江陵县| 托克逊县| 青川县| 嵩明县| 冕宁县| 启东市| 吕梁市| 伊吾县| 富宁县| 揭阳市| 惠来县| 河间市| 仁寿县| 唐山市| 武冈市|