找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Regularity of Optimal Transport Maps and Applications; Guido Philippis Book 2013 The Editor(s) (if applicable) and The Author(s), under ex

[復(fù)制鏈接]
樓主: 佯攻
11#
發(fā)表于 2025-3-23 11:01:11 | 只看該作者
12#
發(fā)表于 2025-3-23 16:13:24 | 只看該作者
,The Monge-Ampère equation,a proof of Caffarelli .. regularity theorem [18, 20]. Many of the tools developed in this Chapter will play a crucial role in the proof of the Sobolev regularity in Chapter 3. In the last Section we show, without proofs, how to build smooth solutions to the Monge-Ampère equation throughout the metho
13#
發(fā)表于 2025-3-23 18:11:25 | 只看該作者
14#
發(fā)表于 2025-3-23 22:55:27 | 只看該作者
Book 2013rove partial regularity of optimal maps with respect to a generic cost functions (it is well known that in this case global regularity can not be expected). More precisely we show that if the target and source measure have smooth densities the optimal map is always smooth outside a closed set of measure zero.
15#
發(fā)表于 2025-3-24 04:48:18 | 只看該作者
Book 2013he known theory, in particular there is a self-contained proof of Brenier’ theorem on existence of optimal transport maps and of Caffarelli’s Theorem on Holder continuity of optimal maps. In the third and fourth chapter we start investigating Sobolev regularity of optimal transport maps, while in Ch
16#
發(fā)表于 2025-3-24 09:01:09 | 只看該作者
2239-1460 nt results like Sobolev regularity and Sobolev stability forIn this thesis, we study the regularity of optimal transport maps and its applications to the semi-geostrophic system. The first two chapters survey the known theory, in particular there is a self-contained proof of Brenier’ theorem on exis
17#
發(fā)表于 2025-3-24 13:51:45 | 只看該作者
,Second order stability for the Monge-Ampère equation and applications,nd ? respectively. By the convexity of .. and ., and the uniqueness of solutions to (2.1), it is immediate to deduce that .. → . uniformly, and ?.. → ?. in ... (Ω) for any . < ∞. What can be said about the strong convergence of ....? Due to the highly nonlinear character of the Monge-Ampère equation, this question is nontrivial.
18#
發(fā)表于 2025-3-24 15:05:00 | 只看該作者
19#
發(fā)表于 2025-3-24 21:28:33 | 只看該作者
20#
發(fā)表于 2025-3-25 00:12:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 10:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
类乌齐县| 台山市| 阳江市| 景泰县| 华蓥市| 大英县| 黄陵县| 吴堡县| 神农架林区| 三明市| 友谊县| 个旧市| 昭觉县| 土默特左旗| 漳平市| 青阳县| 安阳县| 英吉沙县| 修武县| 大兴区| 潜江市| 鄂尔多斯市| 饶河县| 奉化市| 汨罗市| 抚松县| 咸丰县| 年辖:市辖区| 城市| 沐川县| 随州市| 温宿县| 葫芦岛市| 雷山县| 金川县| 剑阁县| 陇南市| 吉林市| 天津市| 乌鲁木齐市| 衡阳市|