找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Regularity of Optimal Transport Maps and Applications; Guido Philippis Book 2013 The Editor(s) (if applicable) and The Author(s), under ex

[復(fù)制鏈接]
樓主: 佯攻
11#
發(fā)表于 2025-3-23 11:01:11 | 只看該作者
12#
發(fā)表于 2025-3-23 16:13:24 | 只看該作者
,The Monge-Ampère equation,a proof of Caffarelli .. regularity theorem [18, 20]. Many of the tools developed in this Chapter will play a crucial role in the proof of the Sobolev regularity in Chapter 3. In the last Section we show, without proofs, how to build smooth solutions to the Monge-Ampère equation throughout the metho
13#
發(fā)表于 2025-3-23 18:11:25 | 只看該作者
14#
發(fā)表于 2025-3-23 22:55:27 | 只看該作者
Book 2013rove partial regularity of optimal maps with respect to a generic cost functions (it is well known that in this case global regularity can not be expected). More precisely we show that if the target and source measure have smooth densities the optimal map is always smooth outside a closed set of measure zero.
15#
發(fā)表于 2025-3-24 04:48:18 | 只看該作者
Book 2013he known theory, in particular there is a self-contained proof of Brenier’ theorem on existence of optimal transport maps and of Caffarelli’s Theorem on Holder continuity of optimal maps. In the third and fourth chapter we start investigating Sobolev regularity of optimal transport maps, while in Ch
16#
發(fā)表于 2025-3-24 09:01:09 | 只看該作者
2239-1460 nt results like Sobolev regularity and Sobolev stability forIn this thesis, we study the regularity of optimal transport maps and its applications to the semi-geostrophic system. The first two chapters survey the known theory, in particular there is a self-contained proof of Brenier’ theorem on exis
17#
發(fā)表于 2025-3-24 13:51:45 | 只看該作者
,Second order stability for the Monge-Ampère equation and applications,nd ? respectively. By the convexity of .. and ., and the uniqueness of solutions to (2.1), it is immediate to deduce that .. → . uniformly, and ?.. → ?. in ... (Ω) for any . < ∞. What can be said about the strong convergence of ....? Due to the highly nonlinear character of the Monge-Ampère equation, this question is nontrivial.
18#
發(fā)表于 2025-3-24 15:05:00 | 只看該作者
19#
發(fā)表于 2025-3-24 21:28:33 | 只看該作者
20#
發(fā)表于 2025-3-25 00:12:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-22 07:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
峨山| 大石桥市| 镇沅| 噶尔县| 巨野县| 得荣县| 松溪县| 大姚县| 车险| 兴义市| 通化县| 广南县| 临清市| 云浮市| 图们市| 剑川县| 山阴县| 远安县| 靖宇县| 珲春市| 抚顺县| 丰镇市| 瑞金市| 乳山市| 汉寿县| 松溪县| 迁安市| 兴安盟| 阿瓦提县| 平罗县| 额尔古纳市| 宝鸡市| 名山县| 云龙县| 夏津县| 铁岭市| 湖南省| 石门县| 关岭| 石阡县| 建湖县|