找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Semigroups; IMNS 2018 Valentina Barucci,Scott Chapman,Ralf Fr?berg Book 2020 The Editor(s) (if applicable) and The Author(s), und

[復制鏈接]
查看: 49263|回復: 59
樓主
發(fā)表于 2025-3-21 19:51:48 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Numerical Semigroups
副標題IMNS 2018
編輯Valentina Barucci,Scott Chapman,Ralf Fr?berg
視頻videohttp://file.papertrans.cn/670/669167/669167.mp4
概述Provides the state of the art on numerical semigroups and related subjects.Offers different perspectives on research in the field.Covers results and examples that are very difficult to find in a struc
叢書名稱Springer INdAM Series
圖書封面Titlebook: Numerical Semigroups; IMNS 2018 Valentina Barucci,Scott Chapman,Ralf Fr?berg Book 2020 The Editor(s) (if applicable) and The Author(s), und
描述.This book presents the state of the art on numerical semigroups and related subjects, offering different perspectives on research in the field and including results and examples that are very difficult to find in a structured exposition elsewhere. The contents comprise the proceedings of the 2018 INdAM “International Meeting on Numerical Semigroups”, held in Cortona, Italy. Talks at the meeting centered not only on traditional types of numerical semigroups, such as Arf or symmetric, and their usual properties, but also on related types of semigroups, such as affine, Puiseux, Weierstrass, and primary, and their applications in other branches of algebra, including semigroup rings, coding theory, star operations, and Hilbert functions. The papers in the book reflect the variety of the talks and derive from research areas including Semigroup Theory, Factorization Theory, Algebraic Geometry, Combinatorics, Commutative Algebra, Coding Theory, and Number Theory. The book is intended for researchers and students who want to learn about recent developments in the theory of numerical semigroups and its connections with other research fields..
出版日期Book 2020
關鍵詞Numerical semigroups; Semigroup rings; Monomial curves; Affine monoids; Wilf conjecture
版次1
doihttps://doi.org/10.1007/978-3-030-40822-0
isbn_softcover978-3-030-40824-4
isbn_ebook978-3-030-40822-0Series ISSN 2281-518X Series E-ISSN 2281-5198
issn_series 2281-518X
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Numerical Semigroups影響因子(影響力)




書目名稱Numerical Semigroups影響因子(影響力)學科排名




書目名稱Numerical Semigroups網(wǎng)絡公開度




書目名稱Numerical Semigroups網(wǎng)絡公開度學科排名




書目名稱Numerical Semigroups被引頻次




書目名稱Numerical Semigroups被引頻次學科排名




書目名稱Numerical Semigroups年度引用




書目名稱Numerical Semigroups年度引用學科排名




書目名稱Numerical Semigroups讀者反饋




書目名稱Numerical Semigroups讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權限
沙發(fā)
發(fā)表于 2025-3-21 20:21:02 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:06:24 | 只看該作者
地板
發(fā)表于 2025-3-22 07:47:06 | 只看該作者
Primality in Semigroup Rings,=?1, 2, and . is completely primal if every factor of . is primal. A ring in which every element is (completely) primal is called a pre-Schreier domain and an integrally closed pre-Schreier domain is called a Schreier domain. In this paper, we study (completely) primal elements and shed more light on the Schreier property in semigroup rings.
5#
發(fā)表于 2025-3-22 10:40:46 | 只看該作者
,On Multi-Index Filtrations Associated to Weierstra? Semigroups, fields, with special emphasis on the case of two points. Some hints about the usage of some packages of the computer algebra software . are also given; these are however only valid for curves defined over . with . a prime number.
6#
發(fā)表于 2025-3-22 15:31:55 | 只看該作者
7#
發(fā)表于 2025-3-22 20:43:09 | 只看該作者
Counting Numerical Semigroups by Genus and Even Gaps via Kunz-Coordinate Vectors,We construct a one-to-one correspondence between a subset of numerical semigroups with genus . and . even gaps and the integer points of a rational polytope. In particular, we give an overview to apply this correspondence to try to decide if the sequence (..) is increasing, where .. denotes the number of numerical semigroups with genus ..
8#
發(fā)表于 2025-3-22 22:01:58 | 只看該作者
Patterns on the Numerical Duplication by Their Admissibility Degree,We develop the theory of patterns on numerical semigroups in terms of the admissibility degree. We prove that the Arf pattern induces every strongly admissible pattern, and determine all patterns equivalent to the Arf pattern. We study patterns on the numerical duplication . when .???0. We also provide a definition of patterns on rings.
9#
發(fā)表于 2025-3-23 04:09:11 | 只看該作者
10#
發(fā)表于 2025-3-23 08:24:02 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 11:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
广丰县| 佛冈县| 合川市| 文安县| 青州市| 宁强县| 汤阴县| 台山市| 布拖县| 南华县| 琼海市| 景洪市| 沁阳市| 唐山市| 若羌县| 古交市| 香港 | 东山县| 亚东县| 峨眉山市| 新巴尔虎左旗| 清苑县| 志丹县| 射阳县| 抚宁县| 惠安县| 仲巴县| 安康市| 如皋市| 广州市| 游戏| 白城市| 茌平县| 晋宁县| 青铜峡市| 蓬莱市| 什邡市| 西林县| 长顺县| 万安县| 渑池县|