找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Semigroups; IMNS 2018 Valentina Barucci,Scott Chapman,Ralf Fr?berg Book 2020 The Editor(s) (if applicable) and The Author(s), und

[復制鏈接]
樓主: 烏鴉
11#
發(fā)表于 2025-3-23 10:48:31 | 只看該作者
Symmetric (Not Complete Intersection) Semigroups Generated by Six Elements,We consider symmetric (not complete intersection) numerical semigroups .., generated by a set of six positive integers {.., …, ..}, ., and derive inequalities for degrees of syzygies of such semigroups and find the lower bound for their Frobenius numbers. We show that this bound may be strengthened if .. satisfies the Watanabe lemma.
12#
發(fā)表于 2025-3-23 14:59:28 | 只看該作者
Arf Numerical Semigroups with Multiplicity 9 and 10,In this work we give a new characterization of Arf numerical semigroups and use it to parametrize Arf numerical semigroups with multiplicity 9 and 10.
13#
發(fā)表于 2025-3-23 19:55:58 | 只看該作者
14#
發(fā)表于 2025-3-23 22:47:53 | 只看該作者
15#
發(fā)表于 2025-3-24 03:00:38 | 只看該作者
Torsion in Tensor Products over One-Dimensional Domains,Over a one-dimensional Gorenstein local domain ., let . be the endomorphism ring of the maximal of ., viewed as a subring of the integral closure .. If there exist finitely generated .-modules . and ., neither of them free, whose tensor product is torsion-free, we show that . must be local with the same residue field as ..
16#
發(fā)表于 2025-3-24 08:51:16 | 只看該作者
Springer INdAM Serieshttp://image.papertrans.cn/n/image/669167.jpg
17#
發(fā)表于 2025-3-24 13:46:25 | 只看該作者
https://doi.org/10.1007/978-3-030-40822-0Numerical semigroups; Semigroup rings; Monomial curves; Affine monoids; Wilf conjecture
18#
發(fā)表于 2025-3-24 16:35:25 | 只看該作者
Book 2020cluding results and examples that are very difficult to find in a structured exposition elsewhere. The contents comprise the proceedings of the 2018 INdAM “International Meeting on Numerical Semigroups”, held in Cortona, Italy. Talks at the meeting centered not only on traditional types of numerical
19#
發(fā)表于 2025-3-24 22:44:33 | 只看該作者
2281-518X ults and examples that are very difficult to find in a struc.This book presents the state of the art on numerical semigroups and related subjects, offering different perspectives on research in the field and including results and examples that are very difficult to find in a structured exposition el
20#
發(fā)表于 2025-3-25 02:22:55 | 只看該作者
Syzygies of Numerical Semigroup Rings, a Survey Through Examples,quence of integers in arithmetic progression. Finally, we describe how the resolution is constructed when the semigroup is obtained by gluing of two numerical semigroups of smaller embedding dimension. Along the paper, we provide several non-trivial examples to illustrate our results.
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-14 15:45
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
汝阳县| 兖州市| 五常市| 华池县| 镇巴县| 大名县| 明星| 丹棱县| 宣汉县| 台湾省| 江孜县| 咸宁市| 吉林市| 辽阳市| 大足县| 洮南市| 甘南县| 台南县| 金昌市| 七台河市| 如皋市| 孝昌县| 大石桥市| 溧阳市| 嘉荫县| 龙胜| 江安县| 绥德县| 金沙县| 安阳市| 马公市| 斗六市| 华阴市| 贞丰县| 库车县| 比如县| 台南市| 喀喇| 兴化市| 友谊县| 岳池县|