找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Numerical Semigroups; IMNS 2018 Valentina Barucci,Scott Chapman,Ralf Fr?berg Book 2020 The Editor(s) (if applicable) and The Author(s), und

[復(fù)制鏈接]
查看: 49272|回復(fù): 59
樓主
發(fā)表于 2025-3-21 19:51:48 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Numerical Semigroups
副標(biāo)題IMNS 2018
編輯Valentina Barucci,Scott Chapman,Ralf Fr?berg
視頻videohttp://file.papertrans.cn/670/669167/669167.mp4
概述Provides the state of the art on numerical semigroups and related subjects.Offers different perspectives on research in the field.Covers results and examples that are very difficult to find in a struc
叢書名稱Springer INdAM Series
圖書封面Titlebook: Numerical Semigroups; IMNS 2018 Valentina Barucci,Scott Chapman,Ralf Fr?berg Book 2020 The Editor(s) (if applicable) and The Author(s), und
描述.This book presents the state of the art on numerical semigroups and related subjects, offering different perspectives on research in the field and including results and examples that are very difficult to find in a structured exposition elsewhere. The contents comprise the proceedings of the 2018 INdAM “International Meeting on Numerical Semigroups”, held in Cortona, Italy. Talks at the meeting centered not only on traditional types of numerical semigroups, such as Arf or symmetric, and their usual properties, but also on related types of semigroups, such as affine, Puiseux, Weierstrass, and primary, and their applications in other branches of algebra, including semigroup rings, coding theory, star operations, and Hilbert functions. The papers in the book reflect the variety of the talks and derive from research areas including Semigroup Theory, Factorization Theory, Algebraic Geometry, Combinatorics, Commutative Algebra, Coding Theory, and Number Theory. The book is intended for researchers and students who want to learn about recent developments in the theory of numerical semigroups and its connections with other research fields..
出版日期Book 2020
關(guān)鍵詞Numerical semigroups; Semigroup rings; Monomial curves; Affine monoids; Wilf conjecture
版次1
doihttps://doi.org/10.1007/978-3-030-40822-0
isbn_softcover978-3-030-40824-4
isbn_ebook978-3-030-40822-0Series ISSN 2281-518X Series E-ISSN 2281-5198
issn_series 2281-518X
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Numerical Semigroups影響因子(影響力)




書目名稱Numerical Semigroups影響因子(影響力)學(xué)科排名




書目名稱Numerical Semigroups網(wǎng)絡(luò)公開度




書目名稱Numerical Semigroups網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Numerical Semigroups被引頻次




書目名稱Numerical Semigroups被引頻次學(xué)科排名




書目名稱Numerical Semigroups年度引用




書目名稱Numerical Semigroups年度引用學(xué)科排名




書目名稱Numerical Semigroups讀者反饋




書目名稱Numerical Semigroups讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:21:02 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:06:24 | 只看該作者
地板
發(fā)表于 2025-3-22 07:47:06 | 只看該作者
Primality in Semigroup Rings,=?1, 2, and . is completely primal if every factor of . is primal. A ring in which every element is (completely) primal is called a pre-Schreier domain and an integrally closed pre-Schreier domain is called a Schreier domain. In this paper, we study (completely) primal elements and shed more light on the Schreier property in semigroup rings.
5#
發(fā)表于 2025-3-22 10:40:46 | 只看該作者
,On Multi-Index Filtrations Associated to Weierstra? Semigroups, fields, with special emphasis on the case of two points. Some hints about the usage of some packages of the computer algebra software . are also given; these are however only valid for curves defined over . with . a prime number.
6#
發(fā)表于 2025-3-22 15:31:55 | 只看該作者
7#
發(fā)表于 2025-3-22 20:43:09 | 只看該作者
Counting Numerical Semigroups by Genus and Even Gaps via Kunz-Coordinate Vectors,We construct a one-to-one correspondence between a subset of numerical semigroups with genus . and . even gaps and the integer points of a rational polytope. In particular, we give an overview to apply this correspondence to try to decide if the sequence (..) is increasing, where .. denotes the number of numerical semigroups with genus ..
8#
發(fā)表于 2025-3-22 22:01:58 | 只看該作者
Patterns on the Numerical Duplication by Their Admissibility Degree,We develop the theory of patterns on numerical semigroups in terms of the admissibility degree. We prove that the Arf pattern induces every strongly admissible pattern, and determine all patterns equivalent to the Arf pattern. We study patterns on the numerical duplication . when .???0. We also provide a definition of patterns on rings.
9#
發(fā)表于 2025-3-23 04:09:11 | 只看該作者
10#
發(fā)表于 2025-3-23 08:24:02 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 15:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
隆林| 大渡口区| 益阳市| 原阳县| 莱西市| 保定市| 麻江县| 双城市| 铁岭县| 常熟市| 内黄县| 田东县| 古交市| 新宁县| 靖远县| 嘉禾县| 新巴尔虎左旗| 华亭县| 河北区| 绥中县| 康保县| 龙南县| 丹江口市| 阳西县| 平顶山市| 江山市| 高安市| 山西省| 甘孜县| 凌云县| 泗阳县| 南康市| 丘北县| 老河口市| 东乌| 永安市| 桃园市| 郯城县| 新竹县| 铅山县| 中方县|