找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theory Related to Fermat’s Last Theorem; Proceedings of the c Neal Koblitz Conference proceedings 1982 Springer Science+Business Med

[復制鏈接]
樓主: Destruct
21#
發(fā)表于 2025-3-25 05:56:40 | 只看該作者
On Automorphic Functions of Half-Integral Weight with Applications to Elliptic Curves,The theory of automorphic forms of 1/2-integral weight has attracted a considerable amount of attention in recent years. The striking difference between the case of integral and 1/2-integral weight is the fact that the Fourier coefficients of 1/2-integral weight forms are expressible in terms of the values of L-functions.
22#
發(fā)表于 2025-3-25 08:04:56 | 只看該作者
,Remarks on Equations Related to Fermat’s Last Theorem,For odd k, define θ(k) as the least value of s such that.has a non-trivial Solution over the integers. Fermat’s Last Theorem impl ies that θ(k) > 3 for odd k > 3.
23#
發(fā)表于 2025-3-25 13:33:19 | 只看該作者
The Cubic Thue Equation,Fix.a cubic form with non-zero discriminant; and let
24#
發(fā)表于 2025-3-25 16:42:14 | 只看該作者
25#
發(fā)表于 2025-3-25 21:24:52 | 只看該作者
26#
發(fā)表于 2025-3-26 02:41:35 | 只看該作者
https://doi.org/10.1007/978-1-4899-6699-5boundary element method; number theory; theorem
27#
發(fā)表于 2025-3-26 05:08:58 | 只看該作者
28#
發(fā)表于 2025-3-26 09:18:50 | 只看該作者
Some Remarks on Weierstrass Points,on S, different from 0, which vanishes at p to order at least g. The set of Weierstrass points on S is nonempty and finite; indeed, each Weierstrass point is assigned a positive integer called the Weierstrass weight, and then one has the result that the sum of the weights of all Weierstrass points on S is (g?l)g(g+l).
29#
發(fā)表于 2025-3-26 15:59:25 | 只看該作者
30#
發(fā)表于 2025-3-26 20:13:29 | 只看該作者
978-0-8176-3104-8Springer Science+Business Media New York 1982
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-11 00:37
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
津市市| 金乡县| 南通市| 玉林市| 顺昌县| 凭祥市| 南漳县| 丰台区| 吐鲁番市| 恩施市| 子长县| 武安市| 新乡县| 岱山县| 平南县| 吉水县| 西畴县| 弥渡县| 衢州市| 蕲春县| 吉安县| 南投县| 儋州市| 渝中区| 临清市| 明溪县| 三门县| 芦山县| 乌兰县| 通河县| 寿光市| 化州市| 大姚县| 盐池县| 东丽区| 南平市| 永州市| 丹棱县| 襄垣县| 阜城县| 淮南市|