找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Number Theory Related to Fermat’s Last Theorem; Proceedings of the c Neal Koblitz Conference proceedings 1982 Springer Science+Business Med

[復制鏈接]
查看: 46032|回復: 60
樓主
發(fā)表于 2025-3-21 16:03:57 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Number Theory Related to Fermat’s Last Theorem
副標題Proceedings of the c
編輯Neal Koblitz
視頻videohttp://file.papertrans.cn/669/668869/668869.mp4
叢書名稱Progress in Mathematics
圖書封面Titlebook: Number Theory Related to Fermat’s Last Theorem; Proceedings of the c Neal Koblitz Conference proceedings 1982 Springer Science+Business Med
出版日期Conference proceedings 1982
關(guān)鍵詞boundary element method; number theory; theorem
版次1
doihttps://doi.org/10.1007/978-1-4899-6699-5
isbn_softcover978-0-8176-3104-8
isbn_ebook978-1-4899-6699-5Series ISSN 0743-1643 Series E-ISSN 2296-505X
issn_series 0743-1643
copyrightSpringer Science+Business Media New York 1982
The information of publication is updating

書目名稱Number Theory Related to Fermat’s Last Theorem影響因子(影響力)




書目名稱Number Theory Related to Fermat’s Last Theorem影響因子(影響力)學科排名




書目名稱Number Theory Related to Fermat’s Last Theorem網(wǎng)絡公開度




書目名稱Number Theory Related to Fermat’s Last Theorem網(wǎng)絡公開度學科排名




書目名稱Number Theory Related to Fermat’s Last Theorem被引頻次




書目名稱Number Theory Related to Fermat’s Last Theorem被引頻次學科排名




書目名稱Number Theory Related to Fermat’s Last Theorem年度引用




書目名稱Number Theory Related to Fermat’s Last Theorem年度引用學科排名




書目名稱Number Theory Related to Fermat’s Last Theorem讀者反饋




書目名稱Number Theory Related to Fermat’s Last Theorem讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:28:23 | 只看該作者
Geometry of Fermat Varieties, automorphisms acts on a Fermat variety. The other is the existence of the so-called “inductive structure” of Fermat varieties of a fixed degree. By combining these, we can deal with various geometric questions concerning Fermat varieties and their products (or varieties closely related to them) suc
板凳
發(fā)表于 2025-3-22 03:09:11 | 只看該作者
地板
發(fā)表于 2025-3-22 05:54:11 | 只看該作者
The Fermat Equation and Transcendence Theory,een shown, in papers of Stewart and of Inkeri and van der Poorten, that if |x - y| is bounded by some fixed number then the equation x. + y. = z. has only finitely many solutions in positive integers x,y,z,n(> 2) and, in principle, these can all be effectively determined. This would seem to be the f
5#
發(fā)表于 2025-3-22 12:19:05 | 只看該作者
Values of L-Functions of Jacobi-Sum Hecke Characters of Abelian Fields,on is done only up to algebraic numbers, and we assume that the Hecke character is in the “good range.” We may make a more refined Statement (the Γ-hypothesis), which actually predicts the values up to rational numbers, and which has been verified in the totally real case ([B]) and in the case of im
6#
發(fā)表于 2025-3-22 15:32:53 | 只看該作者
On the Conjecture of Birch and Swinnerton-Dyer for Elliptic Curves with Complex Multiplication,in the half-plane Re(s) > 3/2 (2.4). Whenever L(E,s) has an analytic continuation to the entire complex plane, we can consider the first term in its Taylor expansion at s= 1; we write L(E,s) ~ c(E) (s ? 1). as s → 1, where r(E) is a nonnegative integer and c(E) is a nonzero real number. Birch and Sw
7#
發(fā)表于 2025-3-22 20:23:14 | 只看該作者
Mordell-Weil Groups of Elliptic Curves Over Cyclotomic Fields,orem asserts that if F is a finite extension of . then E(F) is finitely generated. Our main result shows that for a large class of elliptic curves over ., and for certain infinite abelian extensions F of ., the group E(F) remains finitely generated. it should be noted that the torsion subgroup of E(
8#
發(fā)表于 2025-3-22 22:10:16 | 只看該作者
,Iwasawa’s Theory and p-ADIC L-Functions for Imaginary Quadratic Fields,is to provide some evidence for a “two-variable main conjecture” that has been suggested at least in special cases by R. Yager in [12]. We will first describe various “main conjectures” that have been proposed over the years in a more general and unified way.
9#
發(fā)表于 2025-3-23 03:18:33 | 只看該作者
Dorian Goldfeld,Jeffrey Hoffstein,Samuel James Patterson
10#
發(fā)表于 2025-3-23 08:48:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 00:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
高唐县| 清涧县| 彭泽县| 海淀区| 泰兴市| 葵青区| 崇礼县| 宁津县| 景谷| 上蔡县| 乌鲁木齐市| 永吉县| 克东县| 锡林郭勒盟| 棋牌| 荔浦县| 宁国市| 长治市| 荔浦县| 巩留县| 隆回县| 南平市| 苍溪县| 满洲里市| 长岛县| 镇安县| 怀宁县| 彭州市| 达拉特旗| 宿州市| 齐齐哈尔市| 壤塘县| 右玉县| 嘉兴市| 徐闻县| 波密县| 沽源县| 五峰| 依兰县| 景宁| 道真|