找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Notes on Set Theory; Yiannis N. Moschovakis Textbook 19941st edition Springer Science+Business Media New York 1994 Finite.Mathematica.axio

[復(fù)制鏈接]
樓主: FERAL
11#
發(fā)表于 2025-3-23 12:46:17 | 只看該作者
12#
發(fā)表于 2025-3-23 17:37:24 | 只看該作者
The Natural Numbers, we start with 0 and construct in sequence the successor of every number . forever, then in time we will reach every natural number. In set theoretic terms we can capture this intuition by the following axiomatic characterization.
13#
發(fā)表于 2025-3-23 18:16:58 | 只看該作者
14#
發(fā)表于 2025-3-24 01:21:27 | 只看該作者
Replacement and Other Axioms,nly a couple of minor points remain, but they are significant: they will reveal that Zermelo’s axioms are not sufficient and must be supplemented by stronger principles of set construction. Here we will formulate and add to the axiomatic theory . the . discovered in the early 1920’s, a principle of
15#
發(fā)表于 2025-3-24 05:02:12 | 只看該作者
16#
發(fā)表于 2025-3-24 06:33:12 | 只看該作者
0172-6056 d car- dinal and ordinal numbers. Somewhat less common is the inclusion of a chapter on "pointsets" which focuses on results of interest to analysts and introdu978-1-4757-4153-7Series ISSN 0172-6056 Series E-ISSN 2197-5604
17#
發(fā)表于 2025-3-24 12:13:55 | 只看該作者
18#
發(fā)表于 2025-3-24 16:20:08 | 只看該作者
19#
發(fā)表于 2025-3-24 21:58:30 | 只看該作者
Yiannis N. Moschovakisult for town-reared people, there is a marked reluctance to leave urban centres, a factor which hinders the penetration of education into areas where it is most needed. Ample illustrations of all these obstacles can be found in the recent experience of Turkey.
20#
發(fā)表于 2025-3-25 02:09:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 23:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
天祝| 成都市| 庐江县| 奈曼旗| 思茅市| 昌黎县| 荥阳市| 贵南县| 平顺县| 福海县| 新营市| 会东县| 青川县| 台山市| 扶沟县| 葫芦岛市| 高邑县| 剑河县| 拉萨市| 巴楚县| 汾阳市| 鄂尔多斯市| 稷山县| 剑河县| 白玉县| 阿拉善左旗| 漾濞| 宿州市| 邻水| 玛沁县| 澳门| 松阳县| 湾仔区| 武乡县| 虹口区| 方城县| 叙永县| 汝南县| 当涂县| 安庆市| 儋州市|