找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Notes on Set Theory; Yiannis N. Moschovakis Textbook 19941st edition Springer Science+Business Media New York 1994 Finite.Mathematica.axio

[復(fù)制鏈接]
樓主: FERAL
21#
發(fā)表于 2025-3-25 05:35:26 | 只看該作者
22#
發(fā)表于 2025-3-25 08:58:22 | 只看該作者
Textbook 19941st editionrom straight set theory, these Notes cover the basic facts about "ab- stract sets," including the Axiom of Choice, transfinite recursion, and car- dinal and ordinal numbers. Somewhat less common is the inclusion of a chapter on "pointsets" which focuses on results of interest to analysts and introdu
23#
發(fā)表于 2025-3-25 12:45:17 | 只看該作者
Yiannis N. Moschovakis-economic aggregates such as the balance of payments. Governments are also observed to be interested in the extent of foreign control over energy resources and the implications for national security of relying on various sources of supply.
24#
發(fā)表于 2025-3-25 17:00:01 | 只看該作者
Yiannis N. Moschovakisn. Although the methodology and assumptions of these models have been soundly criticised by a number of economists. they received wide publicity and appeared to be taken seriously by some policy-makers in a number of countries.
25#
發(fā)表于 2025-3-25 22:00:18 | 只看該作者
Yiannis N. Moschovakistitutions, and to the many individuals who commented on our original work, we wish to express our sincere gratitude. We also wish to express our appreciation to our colleague Margaret Walls for her sub- stantial contribution to Chapter 7 on transportation policy.
26#
發(fā)表于 2025-3-26 03:57:49 | 只看該作者
27#
發(fā)表于 2025-3-26 08:18:19 | 只看該作者
28#
發(fā)表于 2025-3-26 10:46:46 | 只看該作者
Notes on Set Theory978-1-4757-4153-7Series ISSN 0172-6056 Series E-ISSN 2197-5604
29#
發(fā)表于 2025-3-26 14:46:22 | 只看該作者
Introduction,., its center. But the systematic study of sets began only at the end of the 19th century with the work of the great German mathematician Georg Cantor, who created a rigorous theory of the concept of . by which we can compare infinite sets as to size.
30#
發(fā)表于 2025-3-26 19:48:12 | 只看該作者
The Natural Numbers, we start with 0 and construct in sequence the successor of every number . forever, then in time we will reach every natural number. In set theoretic terms we can capture this intuition by the following axiomatic characterization.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 01:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
邳州市| 罗定市| 安阳市| 周至县| 靖宇县| 来凤县| 荃湾区| 翁牛特旗| 江川县| 海南省| 赤水市| 田林县| 通化市| 和静县| 玛多县| 布拖县| 宁陵县| 上高县| 忻州市| 谢通门县| 内江市| 连城县| 西乌| 微山县| 泊头市| 名山县| 蒙阴县| 望城县| 易门县| 墨脱县| 张北县| 辽阳市| 沅陵县| 镇雄县| 修文县| 堆龙德庆县| 通山县| 麻栗坡县| 尉犁县| 汝城县| 平湖市|