找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Notes on Set Theory; Yiannis N. Moschovakis Textbook 19941st edition Springer Science+Business Media New York 1994 Finite.Mathematica.axio

[復(fù)制鏈接]
樓主: FERAL
31#
發(fā)表于 2025-3-27 00:12:21 | 只看該作者
32#
發(fā)表于 2025-3-27 02:24:37 | 只看該作者
https://doi.org/10.1007/978-1-4757-4153-7Finite; Mathematica; axiom of choice; language; mathematics; object; ordinal; recursion; set; set theory; sets
33#
發(fā)表于 2025-3-27 08:03:13 | 只看該作者
Equinumerosity,After these preliminaries, we can formulate the fundamental definitions of Cantor about the size or cardinality of sets.
34#
發(fā)表于 2025-3-27 11:03:18 | 只看該作者
35#
發(fā)表于 2025-3-27 16:38:54 | 只看該作者
36#
發(fā)表于 2025-3-27 17:50:48 | 只看該作者
37#
發(fā)表于 2025-3-28 01:21:22 | 只看該作者
38#
發(fā)表于 2025-3-28 04:01:46 | 只看該作者
Are Sets All There is?,tal theorem . of Cantor is about the set ? of real numbers, etc. Put another way, the results of Chapter 2 are not only about sets, but about points, numbers, functions, Cartesian products and many other mathematical objects which are plainly not sets. Where will we find these objects in the axioms of Zermelo which speak only about sets?
39#
發(fā)表于 2025-3-28 09:23:43 | 只看該作者
Replacement and Other Axioms,set construction no less plausible than any of the constructive axioms (.) – (.) but powerful in its consequences. We will also introduce and discuss some additional principles which are often included in axiomatizations of set theory.
40#
發(fā)表于 2025-3-28 10:28:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 01:24
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
霍城县| 措勤县| 洪江市| 伊通| 绵阳市| 双桥区| 左权县| 天祝| 汉沽区| 兴安盟| 临江市| 河津市| 石河子市| 漯河市| 永胜县| 延吉市| 佛坪县| 英超| 余庆县| 长泰县| 灌阳县| 舞钢市| 锦屏县| 焦作市| 保康县| 南丹县| 黑河市| 昌都县| 永和县| 修水县| 闽清县| 桦川县| 晋中市| 张掖市| 内黄县| 清镇市| 革吉县| 张家口市| 仙居县| 西平县| 北碚区|