找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Notes on Set Theory; Yiannis N. Moschovakis Textbook 19941st edition Springer Science+Business Media New York 1994 Finite.Mathematica.axio

[復(fù)制鏈接]
樓主: FERAL
31#
發(fā)表于 2025-3-27 00:12:21 | 只看該作者
32#
發(fā)表于 2025-3-27 02:24:37 | 只看該作者
https://doi.org/10.1007/978-1-4757-4153-7Finite; Mathematica; axiom of choice; language; mathematics; object; ordinal; recursion; set; set theory; sets
33#
發(fā)表于 2025-3-27 08:03:13 | 只看該作者
Equinumerosity,After these preliminaries, we can formulate the fundamental definitions of Cantor about the size or cardinality of sets.
34#
發(fā)表于 2025-3-27 11:03:18 | 只看該作者
35#
發(fā)表于 2025-3-27 16:38:54 | 只看該作者
36#
發(fā)表于 2025-3-27 17:50:48 | 只看該作者
37#
發(fā)表于 2025-3-28 01:21:22 | 只看該作者
38#
發(fā)表于 2025-3-28 04:01:46 | 只看該作者
Are Sets All There is?,tal theorem . of Cantor is about the set ? of real numbers, etc. Put another way, the results of Chapter 2 are not only about sets, but about points, numbers, functions, Cartesian products and many other mathematical objects which are plainly not sets. Where will we find these objects in the axioms of Zermelo which speak only about sets?
39#
發(fā)表于 2025-3-28 09:23:43 | 只看該作者
Replacement and Other Axioms,set construction no less plausible than any of the constructive axioms (.) – (.) but powerful in its consequences. We will also introduce and discuss some additional principles which are often included in axiomatizations of set theory.
40#
發(fā)表于 2025-3-28 10:28:54 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 23:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
禹城市| 特克斯县| 东海县| 同仁县| 靖边县| 洞头县| 兴海县| 湖州市| 治多县| 清徐县| 德钦县| 盘山县| 萨嘎县| 宜兴市| 郯城县| 华坪县| 积石山| 齐齐哈尔市| 库车县| 原平市| 郸城县| 汉源县| 巫溪县| 乐业县| 武汉市| 宿迁市| 东乌珠穆沁旗| 鄢陵县| 射洪县| 扬中市| 吉木乃县| 封丘县| 报价| 浪卡子县| 延津县| 藁城市| 岢岚县| 武鸣县| 抚顺市| 汤阴县| 延寿县|