找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Introduction to Data Science; Sven A. Wegner Textbook 2024 The Editor(s) (if applicable) and The Author(s), under exclusive l

[復(fù)制鏈接]
樓主: 和善
21#
發(fā)表于 2025-3-25 07:07:33 | 只看該作者
Singular Value Decomposition, Courant-Fischer formula, we then link SVD to the greedy algorithm already discussed in Chapter .. This is followed by several applications such as dimensionality reduction of datasets and lower-rank approximation of matrices. As a concrete example, we discuss image compression. Finally, we illustra
22#
發(fā)表于 2025-3-25 07:44:49 | 只看該作者
Separation and Fitting of High-Dimensional Gaussians,ntangled) again. Indeed, high dimensionality plays into our hands here, and we formalize this in the form of an asymptotic separation theorem. We also discuss parameter estimation (fitting) for a single Gaussian, using the maximum likelihood method.
23#
發(fā)表于 2025-3-25 12:23:37 | 只看該作者
Support Vector Machines, machine (SVM) is precisely that classifier for which the decision boundary has the largest possible distance to the data. We reduce the task of finding the SVM to a quadratic optimization problem using the Karush-Kuhn-Tucker theorem and then discuss interpretations of the Lagrange multipliers that
24#
發(fā)表于 2025-3-25 19:47:13 | 只看該作者
Kernel Method, separable dataset into a higher-dimensional (sometimes even infinite-dimensional!) space. If this “embedded dataset” is linearly separable, then we may apply the perceptron algorithm or the SVM method and obtain an induced classifier for the original data. The latter leads to the so-called kernel t
25#
發(fā)表于 2025-3-25 21:26:01 | 只看該作者
Neural Networks,ks with Heaviside activation, we discuss the uniform approximation of continuous functions by shallow or deep neural networks. Highlights are the theorems of Cybenko, Leshno-Lin-Pinkus-Schocken, and Hanin. In the second part of the chapter, we outline the method of backpropagation, with which the we
26#
發(fā)表于 2025-3-26 00:25:03 | 只看該作者
What Is Data (Science)?,egorical and continuous labels. As examples we discuss tables of exam results, handwritten letters, body size distributions, social networks, movie ratings, and grayscale digital images. We outline the questions pertaining to datasets that we will address in the following chapters.
27#
發(fā)表于 2025-3-26 05:37:49 | 只看該作者
28#
發(fā)表于 2025-3-26 11:22:28 | 只看該作者
Best-Fit Subspaces,ethod of least squares from Chapter ., but this time all coordinates of the data points are considered (and not only those designated as labels). By reformulating the initial minimization problem into a maximization problem, we present the greedy algorithm for calculating a best-fit subspace.
29#
發(fā)表于 2025-3-26 12:52:09 | 只看該作者
Separation and Fitting of High-Dimensional Gaussians,ntangled) again. Indeed, high dimensionality plays into our hands here, and we formalize this in the form of an asymptotic separation theorem. We also discuss parameter estimation (fitting) for a single Gaussian, using the maximum likelihood method.
30#
發(fā)表于 2025-3-26 17:21:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 07:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鲁甸县| 延庆县| 新龙县| 锦屏县| 汽车| 潢川县| 钦州市| 苏尼特右旗| 茌平县| 安溪县| 本溪市| 阿勒泰市| 洱源县| 常山县| 景洪市| 双辽市| 潢川县| 益阳市| 连南| 台北县| 甘肃省| 姜堰市| 阿图什市| 泸水县| 东乌珠穆沁旗| 岳阳县| 张家口市| 天门市| 东兴市| 衡南县| 依兰县| 肇州县| 江西省| 泾源县| 汉阴县| 海宁市| 扎鲁特旗| 常德市| 新泰市| 临海市| 大名县|