找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Introduction to Data Science; Sven A. Wegner Textbook 2024 The Editor(s) (if applicable) and The Author(s), under exclusive l

[復制鏈接]
樓主: 和善
31#
發(fā)表于 2025-3-26 21:23:43 | 只看該作者
32#
發(fā)表于 2025-3-27 02:21:01 | 只看該作者
33#
發(fā)表于 2025-3-27 05:46:27 | 只看該作者
34#
發(fā)表于 2025-3-27 11:46:34 | 只看該作者
Concentration of Measure,We intensify our investigation of uniformly distributed random datasets started in Chapter . and first prove the surface concentration theorem followed by the waist concentration theorem. A probabilistic interpretation of these then shows that the effects initially perceived as odd in Chapter . are, on the contrary, very plausible.
35#
發(fā)表于 2025-3-27 15:32:17 | 只看該作者
Gaussian Random Vectors in High Dimensions,In this chapter, we prove the Gaussian annulus theorem using the Chernoff method. As corollaries, we present the Gaussian orthogonality theorem and the Gaussian distance theorem. These theorems show that the properties of high-dimensional Gaussian data, which initially appeared unintuitive in Chapter ., in fact make very much sense.
36#
發(fā)表于 2025-3-27 21:08:58 | 只看該作者
,Dimensionality Reduction à la Johnson-Lindenstrauss,As a further consequence of the Gaussian annulus theorem, we prove the Johnson-Lindenstrauss lemma on random projections and illustrate its application to dimensionality reduction.
37#
發(fā)表于 2025-3-28 01:54:01 | 只看該作者
Perceptron,We return to classification problems with low-dimensional datasets and show how a classifier can be found for binary labeled, linearly separable datasets using the perceptron algorithm.
38#
發(fā)表于 2025-3-28 03:47:30 | 只看該作者
Gradient Descent for Convex Functions,In the last chapter, we provide an introduction to the gradient descent method, which is used in many data science and machine learning problems. In addition to classic results on the convergence of the method for .-convex and .-smooth functions, we also discuss the case where the function to be minimized is merely convex and differentiable.
39#
發(fā)表于 2025-3-28 08:04:37 | 只看該作者
Selected Results of Probability Theory,As an appendix, we summarize some results from probability theory that we have regularly used in the main text.
40#
發(fā)表于 2025-3-28 11:20:25 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 07:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
沂源县| 枣强县| 阿克陶县| 遂川县| 诸暨市| 昌平区| 海兴县| 小金县| 溧水县| 织金县| 玉门市| 巧家县| 克拉玛依市| 静乐县| 扬州市| 敖汉旗| 东城区| 霍城县| 同仁县| 东源县| 邵东县| 衡阳市| 沽源县| 安多县| 阜南县| 读书| 潮州市| 无极县| 龙山县| 南昌县| 板桥市| 连江县| 遵义县| 丰台区| 沭阳县| 张家界市| 马龙县| 阿鲁科尔沁旗| 娱乐| 文化| 金山区|