找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Introduction to Data Science; Sven A. Wegner Textbook 2024 The Editor(s) (if applicable) and The Author(s), under exclusive l

[復制鏈接]
樓主: 和善
31#
發(fā)表于 2025-3-26 21:23:43 | 只看該作者
32#
發(fā)表于 2025-3-27 02:21:01 | 只看該作者
33#
發(fā)表于 2025-3-27 05:46:27 | 只看該作者
34#
發(fā)表于 2025-3-27 11:46:34 | 只看該作者
Concentration of Measure,We intensify our investigation of uniformly distributed random datasets started in Chapter . and first prove the surface concentration theorem followed by the waist concentration theorem. A probabilistic interpretation of these then shows that the effects initially perceived as odd in Chapter . are, on the contrary, very plausible.
35#
發(fā)表于 2025-3-27 15:32:17 | 只看該作者
Gaussian Random Vectors in High Dimensions,In this chapter, we prove the Gaussian annulus theorem using the Chernoff method. As corollaries, we present the Gaussian orthogonality theorem and the Gaussian distance theorem. These theorems show that the properties of high-dimensional Gaussian data, which initially appeared unintuitive in Chapter ., in fact make very much sense.
36#
發(fā)表于 2025-3-27 21:08:58 | 只看該作者
,Dimensionality Reduction à la Johnson-Lindenstrauss,As a further consequence of the Gaussian annulus theorem, we prove the Johnson-Lindenstrauss lemma on random projections and illustrate its application to dimensionality reduction.
37#
發(fā)表于 2025-3-28 01:54:01 | 只看該作者
Perceptron,We return to classification problems with low-dimensional datasets and show how a classifier can be found for binary labeled, linearly separable datasets using the perceptron algorithm.
38#
發(fā)表于 2025-3-28 03:47:30 | 只看該作者
Gradient Descent for Convex Functions,In the last chapter, we provide an introduction to the gradient descent method, which is used in many data science and machine learning problems. In addition to classic results on the convergence of the method for .-convex and .-smooth functions, we also discuss the case where the function to be minimized is merely convex and differentiable.
39#
發(fā)表于 2025-3-28 08:04:37 | 只看該作者
Selected Results of Probability Theory,As an appendix, we summarize some results from probability theory that we have regularly used in the main text.
40#
發(fā)表于 2025-3-28 11:20:25 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 07:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
江陵县| 六安市| 滕州市| 溆浦县| 蒙城县| 合川市| 东乡族自治县| 碌曲县| 鹿邑县| 临颍县| 广河县| 龙海市| 嘉禾县| 鄂托克前旗| 铅山县| 西畴县| 台江县| 延长县| 根河市| 常德市| 郁南县| 轮台县| 平乡县| 抚顺市| 张北县| 涞水县| 利川市| 彝良县| 阿坝县| 汝南县| 夏河县| 新野县| 广丰县| 介休市| 凤山市| 龙里县| 威远县| 柯坪县| 杭州市| 革吉县| 拜城县|