找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Introduction to Data Science; Sven A. Wegner Textbook 2024 The Editor(s) (if applicable) and The Author(s), under exclusive l

[復制鏈接]
樓主: 和善
31#
發(fā)表于 2025-3-26 21:23:43 | 只看該作者
32#
發(fā)表于 2025-3-27 02:21:01 | 只看該作者
33#
發(fā)表于 2025-3-27 05:46:27 | 只看該作者
34#
發(fā)表于 2025-3-27 11:46:34 | 只看該作者
Concentration of Measure,We intensify our investigation of uniformly distributed random datasets started in Chapter . and first prove the surface concentration theorem followed by the waist concentration theorem. A probabilistic interpretation of these then shows that the effects initially perceived as odd in Chapter . are, on the contrary, very plausible.
35#
發(fā)表于 2025-3-27 15:32:17 | 只看該作者
Gaussian Random Vectors in High Dimensions,In this chapter, we prove the Gaussian annulus theorem using the Chernoff method. As corollaries, we present the Gaussian orthogonality theorem and the Gaussian distance theorem. These theorems show that the properties of high-dimensional Gaussian data, which initially appeared unintuitive in Chapter ., in fact make very much sense.
36#
發(fā)表于 2025-3-27 21:08:58 | 只看該作者
,Dimensionality Reduction à la Johnson-Lindenstrauss,As a further consequence of the Gaussian annulus theorem, we prove the Johnson-Lindenstrauss lemma on random projections and illustrate its application to dimensionality reduction.
37#
發(fā)表于 2025-3-28 01:54:01 | 只看該作者
Perceptron,We return to classification problems with low-dimensional datasets and show how a classifier can be found for binary labeled, linearly separable datasets using the perceptron algorithm.
38#
發(fā)表于 2025-3-28 03:47:30 | 只看該作者
Gradient Descent for Convex Functions,In the last chapter, we provide an introduction to the gradient descent method, which is used in many data science and machine learning problems. In addition to classic results on the convergence of the method for .-convex and .-smooth functions, we also discuss the case where the function to be minimized is merely convex and differentiable.
39#
發(fā)表于 2025-3-28 08:04:37 | 只看該作者
Selected Results of Probability Theory,As an appendix, we summarize some results from probability theory that we have regularly used in the main text.
40#
發(fā)表于 2025-3-28 11:20:25 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 10:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
新野县| 晋州市| 丰原市| 庄河市| 西畴县| 南京市| 米脂县| 汤原县| 图木舒克市| 冷水江市| 同仁县| 峨山| 喀什市| 浪卡子县| 黔南| 沙雅县| 枝江市| 离岛区| 新郑市| 城步| 浠水县| 青铜峡市| 九龙城区| 交城县| 临湘市| 大英县| 英山县| 瓮安县| 巴彦县| 普定县| 报价| 郎溪县| 武汉市| 名山县| 思南县| 济宁市| 新建县| 泰兴市| 额济纳旗| 运城市| 曲沃县|