找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Mathematical Introduction to Data Science; Sven A. Wegner Textbook 2024 The Editor(s) (if applicable) and The Author(s), under exclusive l

[復制鏈接]
樓主: 和善
21#
發(fā)表于 2025-3-25 07:07:33 | 只看該作者
Singular Value Decomposition, Courant-Fischer formula, we then link SVD to the greedy algorithm already discussed in Chapter .. This is followed by several applications such as dimensionality reduction of datasets and lower-rank approximation of matrices. As a concrete example, we discuss image compression. Finally, we illustra
22#
發(fā)表于 2025-3-25 07:44:49 | 只看該作者
Separation and Fitting of High-Dimensional Gaussians,ntangled) again. Indeed, high dimensionality plays into our hands here, and we formalize this in the form of an asymptotic separation theorem. We also discuss parameter estimation (fitting) for a single Gaussian, using the maximum likelihood method.
23#
發(fā)表于 2025-3-25 12:23:37 | 只看該作者
Support Vector Machines, machine (SVM) is precisely that classifier for which the decision boundary has the largest possible distance to the data. We reduce the task of finding the SVM to a quadratic optimization problem using the Karush-Kuhn-Tucker theorem and then discuss interpretations of the Lagrange multipliers that
24#
發(fā)表于 2025-3-25 19:47:13 | 只看該作者
Kernel Method, separable dataset into a higher-dimensional (sometimes even infinite-dimensional!) space. If this “embedded dataset” is linearly separable, then we may apply the perceptron algorithm or the SVM method and obtain an induced classifier for the original data. The latter leads to the so-called kernel t
25#
發(fā)表于 2025-3-25 21:26:01 | 只看該作者
Neural Networks,ks with Heaviside activation, we discuss the uniform approximation of continuous functions by shallow or deep neural networks. Highlights are the theorems of Cybenko, Leshno-Lin-Pinkus-Schocken, and Hanin. In the second part of the chapter, we outline the method of backpropagation, with which the we
26#
發(fā)表于 2025-3-26 00:25:03 | 只看該作者
What Is Data (Science)?,egorical and continuous labels. As examples we discuss tables of exam results, handwritten letters, body size distributions, social networks, movie ratings, and grayscale digital images. We outline the questions pertaining to datasets that we will address in the following chapters.
27#
發(fā)表于 2025-3-26 05:37:49 | 只看該作者
28#
發(fā)表于 2025-3-26 11:22:28 | 只看該作者
Best-Fit Subspaces,ethod of least squares from Chapter ., but this time all coordinates of the data points are considered (and not only those designated as labels). By reformulating the initial minimization problem into a maximization problem, we present the greedy algorithm for calculating a best-fit subspace.
29#
發(fā)表于 2025-3-26 12:52:09 | 只看該作者
Separation and Fitting of High-Dimensional Gaussians,ntangled) again. Indeed, high dimensionality plays into our hands here, and we formalize this in the form of an asymptotic separation theorem. We also discuss parameter estimation (fitting) for a single Gaussian, using the maximum likelihood method.
30#
發(fā)表于 2025-3-26 17:21:11 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 13:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
嘉善县| 桐庐县| 神池县| 泰宁县| 新营市| 荃湾区| 谷城县| 孟州市| 朔州市| 拉孜县| 万州区| 武宁县| 尚义县| 澄江县| 辽源市| 贺州市| 沙河市| 南宁市| 苏尼特左旗| 大余县| 塔城市| 巨野县| 普兰县| 铁岭县| 洪湖市| 景宁| 金华市| 台山市| 巴马| 寿光市| 河曲县| 哈巴河县| 沭阳县| 郧西县| 潜山县| 舒城县| 京山县| 兴化市| 洪洞县| 文安县| 乌拉特后旗|