找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning Applications in Electronic Design Automation; Haoxing Ren,Jiang Hu Book 2022 The Editor(s) (if applicable) and The Author

[復(fù)制鏈接]
樓主: affected
41#
發(fā)表于 2025-3-28 16:21:36 | 只看該作者
42#
發(fā)表于 2025-3-28 19:08:21 | 只看該作者
43#
發(fā)表于 2025-3-28 23:53:18 | 只看該作者
Net-Based Machine Learning-Aided Approaches for Timing and Crosstalk Predictionethods either too slow or very inaccurate. Thanks to their strong knowledge extraction and reuse capability, machine learning (ML) techniques have been adopted to improve the predictability of timing and crosstalk effects at different design stages. Many of these works develop net-based models, whos
44#
發(fā)表于 2025-3-29 03:45:36 | 只看該作者
45#
發(fā)表于 2025-3-29 10:05:33 | 只看該作者
Deep Learning for Analyzing Power Delivery Networks and Thermal Networksal intensive step is a critical part of the IC design process and has been a significant computational bottleneck for electronic design automation. Machine learning techniques can efficiently solve these problems by performing fast and accurate analysis and optimization. This chapter presents ML met
46#
發(fā)表于 2025-3-29 13:04:49 | 只看該作者
Machine Learning for Testability Predictiongn. Recent advances in machine learning provide new methodologies to enhance various design stages in the design cycle. This chapter will discuss typical machine learning approaches for testability measurements, which focuses on a set of testability-related prediction problems in both component leve
47#
發(fā)表于 2025-3-29 17:59:54 | 只看該作者
48#
發(fā)表于 2025-3-29 22:31:11 | 只看該作者
RL for Placement and Partitioningrial optimization problem. Next, this chapter delves briefly into the six decades of prior work on this important topic. The heart of the chapter is an overview of deep RL, a primer on how to formulate chip placement as a deep RL problem, and a detailed description of a recent RL-based approach to c
49#
發(fā)表于 2025-3-30 03:16:33 | 只看該作者
50#
發(fā)表于 2025-3-30 04:51:39 | 只看該作者
Circuit Optimization for 2D and 3D ICs with Machine Learningspeedups and dramatic advances in the design process. This chapter presents how traditional physical design algorithms and their extensive portfolio of design settings can be replaced or enhanced with machine learning and a data-driven philosophy. Indeed, using powerful machine learning methods can
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 08:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
南丹县| 辽宁省| 三河市| 富蕴县| 合阳县| 南康市| 玛曲县| 广西| 靖边县| 会同县| 汕尾市| 韶关市| 湟中县| 福贡县| 称多县| 南江县| 大竹县| 夹江县| 始兴县| 新和县| 德阳市| 资源县| 公主岭市| 扶风县| 嘉鱼县| 邳州市| 措勤县| 东源县| 革吉县| 平山县| 翁源县| 那坡县| 简阳市| 广河县| 栾城县| 民乐县| 尼勒克县| 囊谦县| 开平市| 珠海市| 鄄城县|