找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning Applications in Electronic Design Automation; Haoxing Ren,Jiang Hu Book 2022 The Editor(s) (if applicable) and The Author

[復(fù)制鏈接]
查看: 10158|回復(fù): 62
樓主
發(fā)表于 2025-3-21 18:03:41 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Machine Learning Applications in Electronic Design Automation
編輯Haoxing Ren,Jiang Hu
視頻videohttp://file.papertrans.cn/621/620382/620382.mp4
概述Serves as a single-source reference to key machine learning (ML) applications and methods in digital.Covers classical ML methods, as well as deep learning models such as convolutional neural networks
圖書(shū)封面Titlebook: Machine Learning Applications in Electronic Design Automation;  Haoxing Ren,Jiang Hu Book 2022 The Editor(s) (if applicable) and The Author
描述.?This book serves as a single-source reference to key machine learning (ML) applications and methods in digital and analog design and verification. Experts from academia and industry cover a wide range of the latest research on ML applications in electronic design automation (EDA), including analysis and optimization of digital design, analysis and optimization of analog design, as well as functional verification, FPGA and system level designs, design for manufacturing (DFM), and design space exploration. The authors also cover key ML methods such as classical ML, deep learning models such as convolutional neural networks (CNNs), graph neural networks (GNNs), generative adversarial networks (GANs) and optimization methods such as reinforcement learning (RL) and Bayesian optimization (BO). All of these topics are valuable to chip designers and EDA developers and researchers working in digital and analog designs and verification.??.
出版日期Book 2022
關(guān)鍵詞Deep learning for EDA; convolutional neural networks; graph neural networks; generative adversarial net
版次1
doihttps://doi.org/10.1007/978-3-031-13074-8
isbn_softcover978-3-031-13076-2
isbn_ebook978-3-031-13074-8
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書(shū)目名稱Machine Learning Applications in Electronic Design Automation影響因子(影響力)




書(shū)目名稱Machine Learning Applications in Electronic Design Automation影響因子(影響力)學(xué)科排名




書(shū)目名稱Machine Learning Applications in Electronic Design Automation網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Machine Learning Applications in Electronic Design Automation網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Machine Learning Applications in Electronic Design Automation被引頻次




書(shū)目名稱Machine Learning Applications in Electronic Design Automation被引頻次學(xué)科排名




書(shū)目名稱Machine Learning Applications in Electronic Design Automation年度引用




書(shū)目名稱Machine Learning Applications in Electronic Design Automation年度引用學(xué)科排名




書(shū)目名稱Machine Learning Applications in Electronic Design Automation讀者反饋




書(shū)目名稱Machine Learning Applications in Electronic Design Automation讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:55:15 | 只看該作者
http://image.papertrans.cn/m/image/620382.jpg
板凳
發(fā)表于 2025-3-22 03:56:11 | 只看該作者
地板
發(fā)表于 2025-3-22 06:16:29 | 只看該作者
https://doi.org/10.1007/978-3-031-13074-8Deep learning for EDA; convolutional neural networks; graph neural networks; generative adversarial net
5#
發(fā)表于 2025-3-22 12:08:36 | 只看該作者
6#
發(fā)表于 2025-3-22 16:27:38 | 只看該作者
deep learning models such as convolutional neural networks .?This book serves as a single-source reference to key machine learning (ML) applications and methods in digital and analog design and verification. Experts from academia and industry cover a wide range of the latest research on ML applicat
7#
發(fā)表于 2025-3-22 17:09:00 | 只看該作者
Book 2022 convolutional neural networks (CNNs), graph neural networks (GNNs), generative adversarial networks (GANs) and optimization methods such as reinforcement learning (RL) and Bayesian optimization (BO). All of these topics are valuable to chip designers and EDA developers and researchers working in digital and analog designs and verification.??.
8#
發(fā)表于 2025-3-23 00:37:44 | 只看該作者
Deep Learning Framework for Placementmeworks to accelerate kernel placement solvers as well as integrating machine learning models to speed up cross-layer optimization. We hope this line of studies can broaden the applications of machine learning techniques in IC design automation and stimulate more researches in related fields.
9#
發(fā)表于 2025-3-23 02:37:48 | 只看該作者
Machine Learning in the Service of Hardware Functional Verificationconnect the various verification tools and data sources and create a unified data repository in a data warehouse that is optimized for data retrieval. This connection allows the use of advanced data science techniques that improve the quality of the entire verification process.
10#
發(fā)表于 2025-3-23 09:08:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 14:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
福海县| 镶黄旗| 琼中| 石狮市| 西盟| 乐清市| 泉州市| 横峰县| 天长市| 钟祥市| 冕宁县| 醴陵市| 林州市| 开鲁县| 仁化县| 钟祥市| 潢川县| 东城区| 池州市| 浦城县| 宣恩县| 黄梅县| 奇台县| 米易县| 剑阁县| 晋宁县| 石城县| 平潭县| 台山市| 左云县| 黄大仙区| 白玉县| 连云港市| 威宁| 乌什县| 彰化市| 蒲城县| 烟台市| 全州县| 灵石县| 腾冲县|