找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Machine Learning Applications in Electronic Design Automation; Haoxing Ren,Jiang Hu Book 2022 The Editor(s) (if applicable) and The Author

[復(fù)制鏈接]
樓主: affected
11#
發(fā)表于 2025-3-23 10:59:06 | 只看該作者
12#
發(fā)表于 2025-3-23 13:57:57 | 只看該作者
Machine Learning for Analog Circuit Sizingis also presented. We then review and analyze several recently proposed methods on analog sizing, highlighting the adoption of ML techniques. Finally, we summarize the challenges and opportunities in applying ML for analog circuit sizing problem.
13#
發(fā)表于 2025-3-23 18:29:40 | 只看該作者
Net-Based Machine Learning-Aided Approaches for Timing and Crosstalk Predictionsive review of net-based ML-aided approaches for timing and crosstalk prediction. Then, four representative case studies are introduced in detail with the focus on problem formulation, prediction flow, feature engineering, and machine learning engines. Finally, a few conclusion remarks are given.
14#
發(fā)表于 2025-3-24 01:52:01 | 只看該作者
15#
發(fā)表于 2025-3-24 03:13:09 | 只看該作者
16#
發(fā)表于 2025-3-24 08:18:06 | 只看該作者
Machine Learning for Testability Predictioncal machine learning approaches for testability measurements, which focuses on a set of testability-related prediction problems in both component level and circuit level. In addition, several considerations on applying machine learning models for practical testability improvement are introduced.
17#
發(fā)表于 2025-3-24 11:30:19 | 只看該作者
RL for Placement and Partitioningn overview of deep RL, a primer on how to formulate chip placement as a deep RL problem, and a detailed description of a recent RL-based approach to chip placement. The chapter concludes with a discussion of other applications for RL-based methods and their implications for the future of chip design.
18#
發(fā)表于 2025-3-24 17:05:26 | 只看該作者
19#
發(fā)表于 2025-3-24 20:42:46 | 只看該作者
Machine Learning for Mask Synthesis and Verification using machine learning for mask synthesis and verification, including lithograph modeling, hotspot detection, mask optimization, and layout pattern generation. We hope this chapter can motivate future research on AI-assisted DFM solutions.
20#
發(fā)表于 2025-3-25 02:22:45 | 只看該作者
Machine Learning Applications in Electronic Design Automation
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 09:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绥中县| 渭源县| 科技| 原阳县| 安国市| 景洪市| 巴中市| 如皋市| 九龙县| 永兴县| 抚顺市| 赞皇县| 昆明市| 南安市| 曲阳县| 延长县| 北宁市| 扬中市| 香格里拉县| 保山市| 陆河县| 富阳市| 兴海县| 曲阜市| 旌德县| 故城县| 汝南县| 新营市| 界首市| 孟村| 高淳县| 大厂| 渭南市| 鹤岗市| 双流县| 抚顺市| 和林格尔县| 九龙县| 米林县| 新河县| 洮南市|